Opinions

Other environmental concerns apart, GM mustard could also send bees buzzing away

The government, in its assessment of the transgenic crop, has not adequately looked at the impact it will have on bees, among the most important pollinators.

More than six years after a moratorium on Bt Brinjal halted the development of the transgenic vegetable, a sinister game is being played again.

This time, it is the mustard crop that is under the threat of being replaced by an ill-tested, gene-altered version, whose impact on the ecosystem remains unknown.

What primarily motivated the Ministry of Environment and Forest to impose the moratorium on Bt Brinjal was the lack of a suitable bio-safety and risk assessment mechanisms for genetically engineered crops in the country. Over the years, not much has changed on this front.

Why, then, is the government so keen on pressing ahead with the Dhara Mustard Hybrid-11, or DMH-11?

A scrutiny of the Assessment of Food and Environmental Safety document put together by the Ministry of Environment and Forest on the proposal for Authorisation of Environmental Release of Genetically Engineered Mustard (Brassica juncea) Hybrid DMH-11 reveals serious lacunae in the assessment protocols.

The alarming haste with which the government plans to introduce genetically modified mustard to Indian fields shows its sheer disregard for human and environmental concerns.

Impact on bees

Let’s take the case of bees. The yellow mustard flowers in full bloom are not only a treat for the eyes, they are a treat for bees as well, making them a favourite among beekeepers. But the importance of bees to the mustard plant has been completely and conveniently overlooked in the proposal for GM Mustard.

Bees play a crucial role in sustaining life on earth. However small they are, the buzz they create has a wide impact. The pollen grains they carry are responsible for the pollination of 75% of crops globally, including mustard. This is how new seeds are created and this has been nature’s way of striking a delicate balance. For India alone, the worth of insect pollination in important vegetable crops is $726 million.

The mustard crop has 10-20% dependency on bees for pollination, which leads to the creation of new seed sets. Thus, pollen flow from the genetically enhanced mustard is a major concern.

A decrease in pollinator populations can bring about a pollination deficit. This reflects on the health and subsequently, the population of pollinators around the fields. In other words, we need to know how DMH-11 can impact the health of pollinators. Is there an adequate bee population around the DMH-11 fields? Page 84 of the Assessment of Food and Environmental Safety document answers this in one line: "There was no reduction in bee visit."

Such statements indicate the degree of casualness with which the assessment seems to have been made. Our research (recent unpublished data) at the Centre for Pollination Studies, University of Calcutta, reveals for the first time in India that there is significant pollination deficit (when the actual pollination is less than the potential pollination) in conventional mustard grown in intensive agricultural areas where extensive agro-chemicals were used. This was because of the reduction in optimum pollinator population in the landscape that would have been essential for the formation of optimum seed sets in the mustard crop.

In 2005, a major study carried out by a group of American researchers led by Iora Morandin reported a high pollination deficit in genetically modified canola fields (B napus and B rapa) compared to the organic and conventional varieties. This study clearly outlined the effect agrochemicals (including herbicides) would have on pollination. While organic canola had no pollination deficit, the conventional canola (grown with agro-chemicals) had moderate pollination deficit.

In case of the DMH-11, no such pollination deficit study was carried out by comparing it to organic mustard, conventional mustard and the genetically modified hybrid – or even available non-genetically-modified hybrid mustard varieties – across seasons, years and locations.

Further, DMH-11 has been made resistant to a herbicide called gluphosinate, and if the genetically enhanced mustard is commercially released, the farmers are sure to use it generously on the crop. However, the impact of gluphosinate on honeybee health has not been looked at. This is a gaping hole in the assessment protocol.

This is all the more worrisome because very little information is available on the impact of gluphosinate on terrestrial (or aquatic) animals. So nobody really knows what impact the herbicide will have on the bees and other non-target organisms.

Glaring loopholes

As is apparent from the Assessment of Food and Environmental Safety document, although a pollen flow study was conducted for DMH-11, there was no such study conducted for the parent gene – barnase, which comes from soil bacterium Bacillus amyloliquefaciens.

This gene causes male sterility in one parental line of the plant – suppressing its pollen production – and is therefore problematic if it escapes into the wild.

Moreover, the study has been carried out for a single season only, which is grossly inadequate. Such studies need to be carried out over several years. The studies on Bt Brinjal were also carried out over multiple seasons. The single-season study is a prime example of why the move to introduce DMH-11 is hasty.

The pollen flow study reported in the Assessment of Food and Environmental Safety document contains nothing about whether the extent and rate of outcrossing – whether the pollen grains from genetically enhanced mustard were carried by bees to other non-GM mustard varieties or closely-related plant species – was assessed at all.

It appears that the study protocol was limited by a plot distance of only 50 metres surrounding the outer boundary of genetically enhanced crop as specified in Page 85 of the Assessment of Food and Environmental Safety document.

The protocol of fixing the study radius to 50 m is similar to the one used by a group of British scientists led by Jodi Scheffler in 1993. This study was conducted on genetically engineered oil-seed rape (Brassica napus) involving European honey bees (Apismellifera) and the bumble bee (Bombusterrestris).

Although Apismellifera is found in India, the dominant honey bee species are Apiscerana (hive bee) and Apisdorsata (the Indian rock bee). The rock bee, which is larger and feistier than its European counterpart, can carry pollen grains to distances greater than 50m. Unfortunately, this possibility was conveniently forgotten.

Eco-friendly alternatives

The main reason for the aggression and haste in pushing genetically enhanced mustard seems to lie in the (independently unverified) claim that it will increase the yield of the plant by 30%.

But yield can be increased through other pollinator-friendly and eco-agricultural means.

In fact, even if DMH-11 has the potential to increase yield, the deficit in cross-pollination is likely to bring the overall output down.

Instead, yield can be increased by adopting a non-fatal pest-management systems and keeping semi-natural vegetation in the landscape. This technique could be tested on the nearly 12 improved varieties of mustard seeds, (for example, those developed in the Indian Agriculture Research Institute or the Coral 432 hybrid variety developed by Advanta).

In fact, these high-yield hybrid varieties of mustard were also overlooked while testing DMH-11 – no comparison study was carried out between DMH-11 and these varieties.

So the question then arises: do we really need genetically modified hybridisation in the first place?

This poor assessment mechanism was brought up by the environment ministry while imposing the moratorium on Bt Brinjal. The decision document of the ministry had said that “more well designed tests that are independently conducted and widely accepted” would be required before any decision on its release could be considered.

But the case with DMH-11 shows us that six years on, nothing has changed.

Dr Parthib Basu is the associate professor and HoD, Zoology, and Director of Centre for Pollination Studies, University of Calcutta

We welcome your comments at letters@scroll.in.
Sponsored Content BY 

What’s the difference between ‘a’ washing machine and a ‘great’ washing machine?

The right machine can save water, power consumption, time, energy and your clothes from damage.

In 2010, Han Rosling, a Swedish statistician, convinced a room full of people that the washing machine was the greatest invention of the industrial revolution. In the TED talk delivered by him, he illuminates how the washing machine freed women from doing hours of labour intensive laundry, giving them the time to read books and eventually join the labour force. Rosling’s argument rings true even today as it is difficult to deny the significance of the washing machine in our everyday lives.

For many households, buying a washing machine is a sizable investment. Oddly, buyers underestimate the importance of the decision-making process while buying one and don’t research the purchase as much as they would for a television or refrigerator. Most buyers limit their buying criteria to type, size and price of the washing machine.

Visible technological advancements can be seen all around us, making it fair to expect a lot more from household appliances, especially washing machines. Here are a few features to expect and look out for before investing in a washing machine:

Cover your basics

Do you wash your towels every day? How frequently do you do your laundry? Are you okay with a bit of manual intervention during the wash cycle? These questions will help filter the basic type of washing machine you need. The semi-automatics require manual intervention to move clothes from the washing tub to the drying tub and are priced lower than a fully-automatic. A fully-automatic comes in two types: front load and top load. Front loading machines use less water by rotating the inner drum and using gravity to move the clothes through water.

Size matters

The size or the capacity of the machine is directly proportional to the consumption of electricity. The right machine capacity depends on the daily requirement of the household. For instance, for couples or individuals, a 6kg capacity would be adequate whereas a family of four might need an 8 kg or bigger capacity for their laundry needs. This is an important factor to consider since the wrong decision can consume an unnecessary amount of electricity.

Machine intelligence that helps save time

In situations when time works against you and your laundry, features of a well-designed washing machine can come to rescue. There are programmes for urgent laundry needs that provide clean laundry in a super quick 15 to 30 minutes’ cycle; a time delay feature that can assist you to start the laundry at a desired time etc. Many of these features dispel the notion that longer wash cycles mean cleaner clothes. In fact, some washing machines come with pre-activated wash cycles that offer shortest wash cycles across all programmes without compromising on cleanliness.

The green quotient

Despite the conveniences washing machines offer, many of them also consume a substantial amount of electricity and water. By paying close attention to performance features, it’s possible to find washing machines that use less water and energy. For example, there are machines which can adjust the levels of water used based on the size of the load. The reduced water usage, in turn, helps reduce the usage of electricity. Further, machines that promise a silent, no-vibration wash don’t just reduce noise – they are also more efficient as they are designed to work with less friction, thus reducing the energy consumed.

Customisable washing modes

Crushed dresses, out-of-shape shirts and shrunken sweaters are stuff of laundry nightmares. Most of us would rather take out the time to hand wash our expensive items of clothing rather than trusting the washing machine. To get the dirt out of clothes, washing machines use speed to first agitate the clothes and spin the water out of them, a process that takes a toll on the fabric. Fortunately, advanced machines come equipped with washing modes that control speed and water temperature depending on the fabric. While jeans and towels can endure a high-speed tumble and spin action, delicate fabrics like silk need a gentler wash at low speeds. Some machines also have a monsoon mode. This is an India specific mode that gives clothes a hot rinse and spin to reduce drying time during monsoons. A super clean mode will use hot water to clean the clothes deeply.

Washing machines have come a long way, from a wooden drum powered by motor to high-tech machines that come equipped with automatic washing modes. Bosch washing machines include all the above-mentioned features and provide damage free laundry in an energy efficient way. With 32 different washing modes, Bosch washing machines can create custom wash cycles for different types of laundry, be it lightly soiled linens, or stained woollens. The ActiveWater feature in Bosch washing machines senses the laundry load and optimises the usage of water and electricity. Its EcoSilentDrive motor draws energy from a permanent magnet, thereby saving energy and giving a silent wash. The fear of expensive clothes being wringed to shapelessness in a washing machine is a common one. The video below explains how Bosch’s unique VarioDrumTM technology achieves damage free laundry.

Play

To start your search for the perfect washing machine, see here.

This article was produced by the Scroll marketing team on behalf of Bosch and not by the Scroll editorial team.