Climate watch

To better prepare for drought and flood, India needs an integrated system to map water, air, climate

An integrated observation system is essential to manage the food-energy-water nexus.

As the advent of the 2017 summer monsoon over mainland South Asia showed once again, Indian meteorologists have become highly accurate in their forecasts. Gone are those Jerome K Jerome days when you left your umbrella at home if the Meteorological Department predicted rain. Now the weather office can even anticipate a relatively unpredictable phenomenon such as a dust storm in the North Indian summer. It may not be as good for forecasts more than a week in advance, but it’s far better than before.

Farmers all over India – especially those who do not have irrigation facilities – are now using the agricultural meteorology or agrimet service of the India Meteorological Department and they can get crucial information such as rainfall forecast over the next week through text messages on their phones.

The shortcomings

There is a lot that can and should be done to extend the scope of these weather predictions to large-scale hydrological predictions, both short and long term, so that farmers and administrators can plan for the more frequent and more severe floods and droughts that are occurring in South Asia because of climate change.

Information about water flow in rivers is now available through a water resources information system, but that has severe limitations due to regulatory issues – there is no information available to the public about real time water flow in transboundary rivers, thanks to an outdated law. This means there is no real time water flow information available in the public domain from the three largest river basins in the country – those of the Indus, Ganga and Brahmaputra. This clearly affects preparations to face floods.

When it comes to drought preparedness, the situation is similar – the information available is better than before but not good enough. The Central Water Commission now puts out in the public domain the water storage status of the 91 largest reservoirs in India and updates this information every week. This list still leaves out far too many water bodies that are crucial in determining if a region will face drought.

All four gates opened at the Hemavathi reservoir in Karnataka, India. Photo credit: Darshan Simha]
All four gates opened at the Hemavathi reservoir in Karnataka, India. Photo credit: Darshan Simha]

The other crucial information needed to anticipate a drought is the status of groundwater, but the latest status available on the website of India’s Central Ground Water Board is dated March 31, 2011. India is a country where over half the irrigation is from groundwater. It is the world’s largest groundwater user.

There is another shortcoming – India does not have enough monitoring stations to map air pollution over the country. Most of the monitoring stations are scattered over a few large cities, though satellites show the most polluted zones to be in and around industrial townships and highways. Improving this observation system is crucial because air pollution – especially through aerosols – affects local and regional weather patterns.

The next frontier

Improving these hydrologic and air quality information systems is essential to manage the crucial food-water-energy nexus in a warming world. This will need integrated observations and predictions, which can be carried out through a Regional Earth System Prediction framework. Regional Earth System Prediction treats land, ocean, atmosphere, ecosystem, agriculture, and human interactions as components of one integrated system. This has to be used with an integrated observation system that provides the data needed to build, validate and verify local and regional weather and long-term climate system models.

Despite some shortcomings, all the pieces are in place to build a Regional Earth System Prediction and integrated observation system for India. The country now has of one of the best instrumental climate data records of a sufficiently long-time series, covering a large-enough area. Empirical forecasts of the monsoon and various hydrologic variables such as stream flows are now advancing to dynamic forecasts. The research work going on at the Indian Institute of Tropical Meteorology in Pune now includes extending short term weather forecasts to long term climate predictions.

For information essential to manage the food-energy-water nexus, India needs two steps. The first is to improve its hydrologic and air quality information systems. The second is a national strategy to integrate the weather and climate information with the hydrologic and air quality information and manage this together. Then agricultural scientists can improve what they are doing right now to help farmers plan their crops.

To make such an integrated system useful, scientists also need to estimate the length of time to which forecasts from such an integrated system will be reliable.

There are other important parts of an integrated observation system, such as greenhouse gas emissions, soil moisture, soil health, nutrient and sediment loadings in water bodies etc. New scientific developments are happening all the time – a recent one is an improvement in our understanding of how efficiently plants use photosynthesis to turn sunlight into food. These improvements take place at all levels, from the gene to the landscape. Such developments need to be merged into the integrated observation system. Tracking food, energy and water consumption is also an essential part.

When all these are added up, integrating and managing this information may seem a daunting task, but it can be done. Building this capability is a necessary requirement to safeguard the nation’s future.

Raghu Murtugudde is an Earth System Scientist based at the University of Maryland.

This article first appeared on The Third Pole.

We welcome your comments at letters@scroll.in.
Sponsored Content BY 

What’s the difference between ‘a’ washing machine and a ‘great’ washing machine?

The right machine can save water, power consumption, time, energy and your clothes from damage.

In 2010, Hans Rosling, a Swedish statistician, convinced a room full of people that the washing machine was the greatest invention of the industrial revolution. In the TED talk delivered by him, he illuminates how the washing machine freed women from doing hours of labour intensive laundry, giving them the time to read books and eventually join the labour force. Rosling’s argument rings true even today as it is difficult to deny the significance of the washing machine in our everyday lives.

For many households, buying a washing machine is a sizable investment. Oddly, buyers underestimate the importance of the decision-making process while buying one and don’t research the purchase as much as they would for a television or refrigerator. Most buyers limit their buying criteria to type, size and price of the washing machine.

Visible technological advancements can be seen all around us, making it fair to expect a lot more from household appliances, especially washing machines. Here are a few features to expect and look out for before investing in a washing machine:

Cover your basics

Do you wash your towels every day? How frequently do you do your laundry? Are you okay with a bit of manual intervention during the wash cycle? These questions will help filter the basic type of washing machine you need. The semi-automatics require manual intervention to move clothes from the washing tub to the drying tub and are priced lower than a fully-automatic. A fully-automatic comes in two types: front load and top load. Front loading machines use less water by rotating the inner drum and using gravity to move the clothes through water.

Size matters

The size or the capacity of the machine is directly proportional to the consumption of electricity. The right machine capacity depends on the daily requirement of the household. For instance, for couples or individuals, a 6kg capacity would be adequate whereas a family of four might need an 8 kg or bigger capacity for their laundry needs. This is an important factor to consider since the wrong decision can consume an unnecessary amount of electricity.

Machine intelligence that helps save time

In situations when time works against you and your laundry, features of a well-designed washing machine can come to rescue. There are programmes for urgent laundry needs that provide clean laundry in a super quick 15 to 30 minutes’ cycle; a time delay feature that can assist you to start the laundry at a desired time etc. Many of these features dispel the notion that longer wash cycles mean cleaner clothes. In fact, some washing machines come with pre-activated wash cycles that offer shortest wash cycles across all programmes without compromising on cleanliness.

The green quotient

Despite the conveniences washing machines offer, many of them also consume a substantial amount of electricity and water. By paying close attention to performance features, it’s possible to find washing machines that use less water and energy. For example, there are machines which can adjust the levels of water used based on the size of the load. The reduced water usage, in turn, helps reduce the usage of electricity. Further, machines that promise a silent, no-vibration wash don’t just reduce noise – they are also more efficient as they are designed to work with less friction, thus reducing the energy consumed.

Customisable washing modes

Crushed dresses, out-of-shape shirts and shrunken sweaters are stuff of laundry nightmares. Most of us would rather take out the time to hand wash our expensive items of clothing rather than trusting the washing machine. To get the dirt out of clothes, washing machines use speed to first agitate the clothes and spin the water out of them, a process that takes a toll on the fabric. Fortunately, advanced machines come equipped with washing modes that control speed and water temperature depending on the fabric. While jeans and towels can endure a high-speed tumble and spin action, delicate fabrics like silk need a gentler wash at low speeds. Some machines also have a monsoon mode. This is an India specific mode that gives clothes a hot rinse and spin to reduce drying time during monsoons. A super clean mode will use hot water to clean the clothes deeply.

Washing machines have come a long way, from a wooden drum powered by motor to high-tech machines that come equipped with automatic washing modes. Bosch washing machines include all the above-mentioned features and provide damage free laundry in an energy efficient way. With 32 different washing modes, Bosch washing machines can create custom wash cycles for different types of laundry, be it lightly soiled linens, or stained woollens. The ActiveWater feature in Bosch washing machines senses the laundry load and optimises the usage of water and electricity. Its EcoSilentDrive motor draws energy from a permanent magnet, thereby saving energy and giving a silent wash. The fear of expensive clothes being wringed to shapelessness in a washing machine is a common one. The video below explains how Bosch’s unique VarioDrumTM technology achieves damage free laundry.

Play

To start your search for the perfect washing machine, see here.

This article was produced by the Scroll marketing team on behalf of Bosch and not by the Scroll editorial team.