Climate watch

I’ve studied Larsen C and its giant iceberg for years – it’s not a simple story of climate change

Enormous Antarctic icebergs are a rare but natural occurrence.

One of the largest icebergs ever recorded has just broken away from the Larsen C Ice Shelf in Antarctica. Over the past few years I’ve led a team that has been studying this ice shelf and monitoring change. We spent many weeks camped on the ice investigating melt ponds and their impact – and struggling to avoid sunburn thanks to the thin ozone layer. Our main approach, however, is to use satellites to keep an eye on things.

We’ve been surprised by the level of interest in what may simply be a rare but natural occurrence. Because, despite the media and public fascination, the Larsen C rift and iceberg “calving” is not a warning of imminent sea level rise, and any link to climate change is far from straightforward. This event is, however, a spectacular episode in the recent history of Antarctica’s ice shelves, involving forces beyond the human scale, in a place where few of us have been, and one which will fundamentally change the geography of this region.

The iceberg would barely fit inside Wales. Adrian Luckman / MIDAS, Author provided
The iceberg would barely fit inside Wales. Adrian Luckman / MIDAS, Author provided

Ice shelves are found where glaciers meet the ocean and the climate is cold enough to sustain the ice as it goes afloat. Located mostly around Antarctica, these floating platforms of ice a few hundred meters thick form natural barriers which slow the flow of glaciers into the ocean and thereby regulate sea level rise. In a warming world, ice shelves are of particular scientific interest because they are susceptible both to atmospheric warming from above and ocean warming from below.

The ice shelves of the Antarctic peninsula. Note Larsen A and B have largely disappeared.  AJ Cook & DG Vaughan, 2014, CC BY-SA
The ice shelves of the Antarctic peninsula. Note Larsen A and B have largely disappeared. AJ Cook & DG Vaughan, 2014, CC BY-SA

Back in the 1890s, a Norwegian explorer named Carl Anton Larsen sailed south down the Antarctic Peninsula, a 1,000km long branch of the continent that points towards South America. Along the east coast he discovered the huge ice shelf which took his name.

For the following century, the shelf, or what we now know to be a set of distinct shelves – Larsen A, B, C and D – remained fairly stable. However the sudden disintegrations of Larsen A and B in 1995 and 2002 respectively, and the ongoing speed-up of glaciers which fed them, focused scientific interest on their much larger neighbour, Larsen C, the fourth biggest ice shelf in Antarctica.

The author prepares to assist his colleague, Bryn Hubbard from Aberystwyth University, in drilling a borehole in Larsen C using pressurised hot water.  MIDAS, Author provided
The author prepares to assist his colleague, Bryn Hubbard from Aberystwyth University, in drilling a borehole in Larsen C using pressurised hot water. MIDAS, Author provided

This is why colleagues and I set out in 2014 to study the role of surface melt on the stability of this ice shelf. Not long into the project, the discovery by our colleague, Daniela Jansen, of a rift growing rapidly through Larsen C, immediately gave us something equally significant to investigate.

Nature at work

The development of rifts and the calving of icebergs is part of the natural cycle of an ice shelf. What makes this iceberg unusual is its size – at around 5,800 km² it’s the size of a small US state. There is also the concern that what remains of Larsen C will be susceptible to the same fate as Larsen B, and collapse almost entirely.

Our work has highlighted significant similarities between the previous behaviour of Larsen B and current developments at Larsen C, and we have shown that stability may be compromised. Others, however, are confident that Larsen C will remain stable.

What is not disputed by scientists is that it will take many years to know what will happen to the remainder of Larsen C as it begins to adapt to its new shape, and as the iceberg gradually drifts away and breaks up. There will certainly be no imminent collapse, and unquestionably no direct effect on sea level because the iceberg is already afloat and displacing its own weight in seawater.

This means that, despite much speculation, we would have to look years into the future for ice from Larsen C to contribute significantly to sea level rise. In 1995 Larsen B underwent a similar calving event. However, it took a further seven years of gradual erosion of the ice-front before the ice shelf became unstable enough to collapse, and glaciers held back by it were able to speed up, and even then the collapse process may have depended on the presence of surface melt ponds.

Even if the remaining part of Larsen C were to eventually collapse, many years into the future, the potential sea level rise is quite modest. Taking into account only the catchments of glaciers flowing into Larsen C, the total, even after decades, will probably be less than a centimetre.

Is this a climate change signal?

This event has also been widely but over-simplistically linked to climate change. This is not surprising because notable changes in the earth’s glaciers and ice sheets are normally associated with rising environmental temperatures. The collapses of Larsen A and B have previously been linked to regional warming, and the iceberg calving will leave Larsen C at its most retreated position in records going back over a hundred years.

However, in satellite images from the 1980s, the rift was already clearly a long-established feature, and there is no direct evidence to link its recent growth to either atmospheric warming, which is not felt deep enough within the ice shelf, or ocean warming, which is an unlikely source of change given that most of Larsen C has recently been thickening. It is probably too early to blame this event directly on human-generated climate change.

Adrian Luckman, Professor of Glaciology and Remote Sensing, Swansea University.

This article first appeared on The Conversation.

We welcome your comments at
Sponsored Content BY 

How sustainable farming practices can secure India's food for the future

India is home to 15% of the world’s undernourished population.

Food security is a pressing problem in India and in the world. According to the Food and Agriculture Organization of the UN (FAO), it is estimated that over 190 million people go hungry every day in the country.

Evidence for India’s food challenge can be found in the fact that the yield per hectare of rice, one of India’s principal crops, is 2177 kgs per hectare, lagging behind countries such as China and Brazil that have yield rates of 4263 kgs/hectare and 3265 kgs/hectare respectively. The cereal yield per hectare in the country is also 2,981 kgs per hectare, lagging far behind countries such as China, Japan and the US.

The slow growth of agricultural production in India can be attributed to an inefficient rural transport system, lack of awareness about the treatment of crops, limited access to modern farming technology and the shrinking agricultural land due to urbanization. Add to that, an irregular monsoon and the fact that 63% of agricultural land is dependent on rainfall further increase the difficulties we face.

Despite these odds, there is huge potential for India to increase its agricultural productivity to meet the food requirements of its growing population.

The good news is that experience in India and other countries shows that the adoption of sustainable farming practices can increase both productivity and reduce ecological harm.

Sustainable agriculture techniques enable higher resource efficiency – they help produce greater agricultural output while using lesser land, water and energy, ensuring profitability for the farmer. These essentially include methods that, among other things, protect and enhance the crops and the soil, improve water absorption and use efficient seed treatments. While Indian farmers have traditionally followed these principles, new technology now makes them more effective.

For example, for soil enhancement, certified biodegradable mulch films are now available. A mulch film is a layer of protective material applied to soil to conserve moisture and fertility. Most mulch films used in agriculture today are made of polyethylene (PE), which has the unwanted overhead of disposal. It is a labour intensive and time-consuming process to remove the PE mulch film after usage. If not done, it affects soil quality and hence, crop yield. An independently certified biodegradable mulch film, on the other hand, is directly absorbed by the microorganisms in the soil. It conserves the soil properties, eliminates soil contamination, and saves the labor cost that comes with PE mulch films.

The other perpetual challenge for India’s farms is the availability of water. Many food crops like rice and sugarcane have a high-water requirement. In a country like India, where majority of the agricultural land is rain-fed, low rainfall years can wreak havoc for crops and cause a slew of other problems - a surge in crop prices and a reduction in access to essential food items. Again, Indian farmers have long experience in water conservation that can now be enhanced through technology.

Seeds can now be treated with enhancements that help them improve their root systems. This leads to more efficient water absorption.

In addition to soil and water management, the third big factor, better seed treatment, can also significantly improve crop health and boost productivity. These solutions include application of fungicides and insecticides that protect the seed from unwanted fungi and parasites that can damage crops or hinder growth, and increase productivity.

While sustainable agriculture through soil, water and seed management can increase crop yields, an efficient warehousing and distribution system is also necessary to ensure that the output reaches the consumers. According to a study by CIPHET, Indian government’s harvest-research body, up to 67 million tons of food get wasted every year — a quantity equivalent to that consumed by the entire state of Bihar in a year. Perishables, such as fruits and vegetables, end up rotting in store houses or during transportation due to pests, erratic weather and the lack of modern storage facilities. In fact, simply bringing down food wastage and increasing the efficiency in distribution alone can significantly help improve food security. Innovations such as special tarpaulins, that keep perishables cool during transit, and more efficient insulation solutions can reduce rotting and reduce energy usage in cold storage.

Thus, all three aspects — production, storage, and distribution — need to be optimized if India is to feed its ever-growing population.

One company working to drive increased sustainability down the entire agriculture value chain is BASF. For example, the company offers cutting edge seed treatments that protect crops from disease and provide plant health benefits such as enhanced vitality and better tolerance for stress and cold. In addition, BASF has developed a biodegradable mulch film from its ecovio® bioplastic that is certified compostable – meaning farmers can reap the benefits of better soil without risk of contamination or increased labor costs. These and more of the company’s innovations are helping farmers in India achieve higher and more sustainable yields.

Of course, products are only one part of the solution. The company also recognizes the importance of training farmers in sustainable farming practices and in the safe use of its products. To this end, BASF engaged in a widespread farmer outreach program called Samruddhi from 2007 to 2014. Their ‘Suraksha Hamesha’ (safety always) program reached over 23,000 farmers and 4,000 spray men across India in 2016 alone. In addition to training, the company also offers a ‘Sanrakshan® Kit’ to farmers that includes personal protection tools and equipment. All these efforts serve to spread awareness about the sustainable and responsible use of crop protection products – ensuring that farmers stay safe while producing good quality food.

Interested in learning more about BASF’s work in sustainable agriculture? See here.

This article was produced by the Scroll marketing team on behalf of BASF and not by the Scroll editorial team.