air pollution

Your shampoo, hair spray and skin lotion may be polluting the air

New research spotlights personal care products as a significant source of chemicals that contribute to urban air pollution.

Millions of Americans apply personal care products every morning before heading to work or school. But these products don’t stick to our bodies permanently. Over the course of the day, compounds in deodorants, lotions, hair gels and perfumes evaporate from our skin and eventually make their way outdoors. Now there’s new evidence to suggest that these products are major sources of air pollution in urban areas.

For decades, motor vehicles were considered the primary source of air pollutants in major cities in the United States. Vehicle exhaust contains multiple pollutants that worsen air quality, including nitrogen oxides, particulate matter and volatile organic compounds – a group of reactive gases that contribute to smog formation.

Thanks to advances in catalytic converters and improvements in fuel economy, combined emissions of common pollutants from cars have decreased by 65% since the 1970s. Air pollution is still a problem in urban areas like Los Angeles, but only a fraction of it can be attributed to vehicles. Today, scientists are finding that other non-combustion sources – including common household products – are also major contributors.

Volatile organic compounds react in the air with nitrogen oxides to form ozone and smog. (Credit: Minnesota Pollution Control Agency)
Volatile organic compounds react in the air with nitrogen oxides to form ozone and smog. (Credit: Minnesota Pollution Control Agency)

A unique fingerprint

In a recent study with US and Canadian colleagues, our lab found that these sources can include personal care products. We analysed urban air in two cities: Boulder, Colorado, and Toronto, Ontario, Canada.

In Boulder, our lab had recently invested in new instrumentation, which we wanted to use to measure wood stove emissions during winter months. For five weeks we sampled air from the roof of the NOAA David Skaggs Research Center in hope of measuring air parcels contaminated with smoke from residential wood stoves. Surprisingly, we noticed a signal that stood out unexpectedly from all the other data. This compound, which we identified as decamethylcyclopentasiloxane (or D5 siloxane), contains silicon, which uniquely differs from the organic compounds we normally detect.

By reviewing scientific literature, we learned that pure D5 siloxane is produced mainly as an additive for deodorants and hair care products. On average, people use products that contain a total of about 100 milligrams-200 milligrams of D5 every day – roughly the weight of half an aspirin tablet. Some fraction of these products end up going down the drain when we shower, but the majority of what remains on our bodies ends up in the atmosphere. D5 can also be found in many other places, including soil, oceans and the tissues of fish and human beings

Many labs have studied the environmental fate of D5, but from our perspective it is particularly useful because it acts like a fingerprint. If we detect D5 in the atmosphere, we know that the air mass we measured was influenced by emissions from personal care products. By comparing the amount of D5 in the atmosphere to other fingerprint markers, such as compounds present in vehicle exhaust, we can estimate how important personal care products are as an emissions source relative to better-understood sources.

Air pollution from transportation in the US has fallen in the past 40 years even as population and vehicles miles travelled have increased. (Credit: USEPA)
Air pollution from transportation in the US has fallen in the past 40 years even as population and vehicles miles travelled have increased. (Credit: USEPA)

Emissions spike during morning rush hour

In Boulder and Toronto, we found that D5 was present in urban air at mass concentrations comparable to those of benzene, a chemical that is a marker for vehicle exhaust. (Benzene is a known carcinogen and is also found in industrial emissions and cigarette smoke.)

D5 concentrations were highest in the morning – the time when most people shower, apply personal care products and then leave the house to commute to work. We also observed a peak in benzene emissions in the morning, when people drive to work. During morning rush hour, we found that emissions of D5 and benzene were almost equivalent.

In other words, at this time of day, people emitted a plume of organic compounds that was comparable in mass to the plume of organic compounds emitted from their vehicles. Researchers still have a lot to learn about how these chemicals react in the atmosphere to form smog, so the air quality implications of these morning emissions remain unclear.

Benzene emissions remained high throughout the day as people drove around the city, but D5 emissions eventually tapered off as personal care products evaporated from users’ skin. We estimate that, on average, the entire population of the city of Boulder emits 3 kg to 5 kg (6 pounds to 11 pounds) of D5 per day, and that their cars emit about 15 kg of benzene in vehicle exhaust.

From the medicine cabinet

While these numbers may seem surprisingly high, our findings support recent modeling work conducted by Brian McDonald, a co-author of this study, which showed that personal care product volatile organic compound emissions in Los Angeles now rival volatile organic compound emissions from gasoline and diesel exhaust. Taken together, these two studies demonstrate that our urban air is remarkably different from what it was decades ago. Cars today emit fewer smog-inducing organic compounds, while other sources are now becoming important contributors to air pollution.

D5 is only one component of personal care product emissions, and many other compounds could be emitted with it. To fully assess how seriously these emissions may affect the environment and human health, researchers have to answer many more questions. What other compounds enter the atmosphere after we apply personal care products? Once in the atmosphere, what happens to them? Are they capable of contributing to smog formation? Our lab and others around the country are considering these questions now in the hope of improving our understanding of urban air pollution.

Matthew Coggon, Research scientist, University of Colorado.

This article first appeared on The Conversation.

Support our journalism by subscribing to Scroll+ here. We welcome your comments at letters@scroll.in.
Sponsored Content BY 

Do you really need to use that plastic straw?

The hazards of single-use plastic items, and what to use instead.

In June 2018, a distressed whale in Thailand made headlines around the world. After an autopsy it’s cause of death was determined to be more than 80 plastic bags it had ingested. The pictures caused great concern and brought into focus the urgency of the fight against single-use plastic. This term refers to use-and-throw plastic products that are designed for one-time use, such as takeaway spoons and forks, polythene bags styrofoam cups etc. In its report on single-use plastics, the United Nations Environment Programme (UNEP) has described how single-use plastics have a far-reaching impact in the environment.

Dense quantity of plastic litter means sights such as the distressed whale in Thailand aren’t uncommon. Plastic products have been found in the airways and stomachs of hundreds of marine and land species. Plastic bags, especially, confuse turtles who mistake them for jellyfish - their food. They can even exacerbate health crises, such as a malarial outbreak, by clogging sewers and creating ideal conditions for vector-borne diseases to thrive. In 1988, poor drainage made worse by plastic clogging contributed to the devastating Bangladesh floods in which two-thirds of the country was submerged.

Plastic litter can, moreover, cause physiological harm. Burning plastic waste for cooking fuel and in open air pits releases harmful gases in the air, contributing to poor air quality especially in poorer countries where these practices are common. But plastic needn’t even be burned to cause physiological harm. The toxic chemical additives in the manufacturing process of plastics remain in animal tissue, which is then consumed by humans. These highly toxic and carcinogenic substances (benzene, styrene etc.) can cause damage to nervous systems, lungs and reproductive organs.

The European Commission recently released a list of top 10 single-use plastic items that it plans to ban in the near future. These items are ubiquitous as trash across the world’s beaches, even the pristine, seemingly untouched ones. Some of them, such as styrofoam cups, take up to a 1,000 years to photodegrade (the breakdown of substances by exposure to UV and infrared rays from sunlight), disintegrating into microplastics, another health hazard.

More than 60 countries have introduced levies and bans to discourage the use of single-use plastics. Morocco and Rwanda have emerged as inspiring success stories of such policies. Rwanda, in fact, is now among the cleanest countries on Earth. In India, Maharashtra became the 18th state to effect a ban on disposable plastic items in March 2018. Now India plans to replicate the decision on a national level, aiming to eliminate single-use plastics entirely by 2022. While government efforts are important to encourage industries to redesign their production methods, individuals too can take steps to minimise their consumption, and littering, of single-use plastics. Most of these actions are low on effort, but can cause a significant reduction in plastic waste in the environment, if the return of Olive Ridley turtles to a Mumbai beach are anything to go by.

To know more about the single-use plastics problem, visit Planet or Plastic portal, National Geographic’s multi-year effort to raise awareness about the global plastic trash crisis. From microplastics in cosmetics to haunting art on plastic pollution, Planet or Plastic is a comprehensive resource on the problem. You can take the pledge to reduce your use of single-use plastics, here.

This article was produced by the Scroll marketing team on behalf of National Geographic, and not by the Scroll editorial team.