Obiturary

ECG Sudarshan (1931-2018): An eminent physicist who missed out on a Nobel Prize

Born in Kerala, Sudarshan worked as a professor in Texas for many years and achieved several scientific breakthroughs. He died on Monday.

The world of science has lost an eminent physicist with the passing away of Professor ECG Sudarshan, who has controversially overlooked for the Nobel Prize on more than one occasion. His research interests spanned a wide range of fields from particle physics, quantum optics and quantum field theory to quantum information theory, gauge theories and classical mechanics.

Born on September 16, 1931, at Pallam in Kottayam district of Kerala, he did his MSc from Madras University and PhD from University of Rochester, New York. He had his academic career mostly in the US. He passed away in Texas on Monday. He was a Professor at University of Texas for the past 40 years. In the 1980s, he worked as Director of Institute of Mathematical Sciences at Chennai for five years.

One of the most accomplished and renowned theoretical physicists of Indian origin, he is known for his prodigious creative output. He, together with American physicist Robert Eugene Marshak, came out in 1957 with what is called the VA Theory of weak interactions. Three others, Sheldon Glashow, Abdus Salam and Steven Weinberg, developed it further. It eventually evolved as an electro weak theory of weak interactions. The three got the Nobel Prize for their work in 1979. Sudarshan and Professor Marshak got left behind.

Dr Sudarshan had achieved another breakthrough in 1960s, when he propounded the theory of Tachyons. According to the theory, there should be particles called Tachyons, which had speeds larger than that of light. So far, the particles have not been found experimentally. But physicists are hopeful. As and when they are discovered, it will be a historical moment as it would markedly change the conception and understanding of the universe. Tachycon is considered as a revolutionary idea within the framework of the Special Theory of Relativity.

The Nobel let down

Even as he missed the Nobel prize several times, Sudarshan openly expressed his anguish when the Royal Swedish Academy of Sciences chose to give a prize to RJ Glauber in 2005 “for his contribution to the quantum theory of optical coherence”, ignoring Sudarshan’s work.

In a letter to the Academy, he said:

“In the announcement of the 2005 Physics Nobel Prize, the Swedish Royal Academy has chosen RJ Glauber to be awarded half of the prize. The prize winners are chosen by the Royal Academy, but no one has the right to take my discoveries and formulations and ascribe them to someone else!

The correct formulation of the quantum mechanical treatment of optics was carried out by me in my paper in 1963. In that I showed that every state can be represented in the diagonal form...This diagonal representation is valid for all fields.

...The irony of the situation is that in spite of all these facts being available in print, the diagonal representation instead of being referred to as the Sudarshan representation is dubbed as either the P-Representation (as if Glauber discovered and named it first) or at best as ‘Glauber-Sudarshan’ Representation.

While the distinction of introducing coherent states as basic entities to describe optical fields certainly goes to Glauber, the possibility of using them to describe ‘all’ optical fields (of all intensities) through the diagonal representation is certainly due to Sudarshan. Thus there is no need to ‘extract’ the classical limit [as stated in the Nobel citation]. Sudarshan’s work is not merely a mathematical formalism. It is the basic theory underlying all optical fields. All the quantum features are brought out in his diagonal representation...

It is my belief that the Royal Swedish Academy was impartial and that to assure the proper priorities it has a Committee in Physics, with members competent to examine and understand the published work. It was also my belief that the members of the Committee did their work diligently and with care. I am therefore genuinely surprised and disappointed by this year’s choice. It would distress me and many others if extra scientific considerations were responsible for this decision. It is my hope that these glaring injustices would be noted by the Academy and modify the citations.

Give unto Glauber only what is his.”

This article is from India Science Wire

Support our journalism by subscribing to Scroll+ here. We welcome your comments at letters@scroll.in.
Sponsored Content BY 

The next Industrial Revolution is here – driven by the digitalization of manufacturing processes

Technologies such as Industry 4.0, IoT, robotics and Big Data analytics are transforming the manufacturing industry in a big way.

The manufacturing industry across the world is seeing major changes, driven by globalization and increasing consumer demand. As per a report by the World Economic Forum and Deloitte Touche Tohmatsu Ltd on the future of manufacturing, the ability to innovate at a quicker pace will be the major differentiating factor in the success of companies and countries.

This is substantiated by a PWC research which shows that across industries, the most innovative companies in the manufacturing sector grew 38% (2013 - 2016), about 11% year on year, while the least innovative manufacturers posted only a 10% growth over the same period.

Along with innovation in products, the transformation of manufacturing processes will also be essential for companies to remain competitive and maintain their profitability. This is where digital technologies can act as a potential game changer.

The digitalization of the manufacturing industry involves the integration of digital technologies in manufacturing processes across the value chain. Also referred to as Industry 4.0, digitalization is poised to reshape all aspects of the manufacturing industry and is being hailed as the next Industrial Revolution. Integral to Industry 4.0 is the ‘smart factory’, where devices are inter-connected, and processes are streamlined, thus ensuring greater productivity across the value chain, from design and development, to engineering and manufacturing and finally to service and logistics.

Internet of Things (IoT), robotics, artificial intelligence and Big Data analytics are some of the key technologies powering Industry 4.0. According to a report, Industry 4.0 will prompt manufacturers globally to invest $267 billion in technologies like IoT by 2020. Investments in digitalization can lead to excellent returns. Companies that have implemented digitalization solutions have almost halved their manufacturing cycle time through more efficient use of their production lines. With a single line now able to produce more than double the number of product variants as three lines in the conventional model, end to end digitalization has led to an almost 20% jump in productivity.

Digitalization and the Indian manufacturing industry

The Make in India program aims to increase the contribution of the manufacturing industry to the country’s GDP from 16% to 25% by 2022. India’s manufacturing sector could also potentially touch $1 trillion by 2025. However, to achieve these goals and for the industry to reach its potential, it must overcome the several internal and external obstacles that impede its growth. These include competition from other Asian countries, infrastructural deficiencies and lack of skilled manpower.

There is a common sentiment across big manufacturers that India lacks the eco-system for making sophisticated components. According to FICCI’s report on the readiness of Indian manufacturing to adopt advanced manufacturing trends, only 10% of companies have adopted new technologies for manufacturing, while 80% plan to adopt the same by 2020. This indicates a significant gap between the potential and the reality of India’s manufacturing industry.

The ‘Make in India’ vision of positioning India as a global manufacturing hub requires the industry to adopt innovative technologies. Digitalization can give the Indian industry an impetus to deliver products and services that match global standards, thereby getting access to global markets.

The policy, thus far, has received a favourable response as global tech giants have either set up or are in the process of setting up hi-tech manufacturing plants in India. Siemens, for instance, is helping companies in India gain a competitive advantage by integrating industry-specific software applications that optimise performance across the entire value chain.

The Digital Enterprise is Siemens’ solution portfolio for the digitalization of industries. It comprises of powerful software and future-proof automation solutions for industries and companies of all sizes. For the discrete industries, the Digital Enterprise Suite offers software and hardware solutions to seamlessly integrate and digitalize their entire value chain – including suppliers – from product design to service, all based on one data model. The result of this is a perfect digital copy of the value chain: the digital twin. This enables companies to perform simulation, testing, and optimization in a completely virtual environment.

The process industries benefit from Integrated Engineering to Integrated Operations by utilizing a continuous data model of the entire lifecycle of a plant that helps to increase flexibility and efficiency. Both offerings can be easily customized to meet the individual requirements of each sector and company, like specific simulation software for machines or entire plants.

Siemens has identified projects across industries and plans to upgrade these industries by connecting hardware, software and data. This seamless integration of state-of-the-art digital technologies to provide sustainable growth that benefits everyone is what Siemens calls ‘Ingenuity for Life’.

Case studies for technology-led changes

An example of the implementation of digitalization solutions from Siemens can be seen in the case of pharma major Cipla Ltd’s Kurkumbh factory.

Cipla needed a robust and flexible distributed control system to dispense and manage solvents for the manufacture of its APIs (active pharmaceutical ingredients used in many medicines). As part of the project, Siemens partnered with Cipla to install the DCS-SIMATIC PCS 7 control system and migrate from batch manufacturing to continuous manufacturing. By establishing the first ever flow Chemistry based API production system in India, Siemens has helped Cipla in significantly lowering floor space, time, wastage, energy and utility costs. This has also improved safety and product quality.

In yet another example, technology provided by Siemens helped a cement plant maximise its production capacity. Wonder Cement, a greenfield project set up by RK Marbles in Rajasthan, needed an automated system to improve productivity. Siemens’ solution called CEMAT used actual plant data to make precise predictions for quality parameters which were previously manually entered by operators. As a result, production efficiency was increased and operators were also freed up to work on other critical tasks. Additionally, emissions and energy consumption were lowered – a significant achievement for a typically energy intensive cement plant.

In the case of automobile major, Mahindra & Mahindra, Siemens’ involvement involved digitalizing the whole product development system. Siemens has partnered with the manufacturer to provide a holistic solution across the entire value chain, from design and planning to engineering and execution. This includes design and software solutions for Product Lifecycle Management, Siemens Technology for Powertrain (STP) and Integrated Automation. For Powertrain, the solutions include SINUMERIK, SINAMICS, SIMOTICS and SIMATIC controls and drives, besides CNC and PLC-controlled machines linked via the Profinet interface.

The above solutions helped the company puts its entire product lifecycle on a digital platform. This has led to multi-fold benefits – better time optimization, higher productivity, improved vehicle performance and quicker response to market requirements.

Siemens is using its global expertise to guide Indian industries through their digital transformation. With the right technologies in place, India can see a significant improvement in design and engineering, cutting product development time by as much as 30%. Besides, digital technologies driven by ‘Ingenuity for Life’ can help Indian manufacturers achieve energy efficiency and ensure variety and flexibility in their product offerings while maintaining quality.

Play

The above examples of successful implementation of digitalization are just some of the examples of ‘Ingenuity for Life’ in action. To learn more about Siemens’ push to digitalize India’s manufacturing sector, see here.

This article was produced on behalf of Siemens by the Scroll.in marketing team and not by the Scroll.in editorial staff.