drug drain

India’s pharma industry is creating superbugs with its dirty effluent discharges

Major study finds ‘excessively high’ levels of drug residues in water bodies in Hyderabad, allowing microbes to build resistance to medicines.

Industrial pollution from Indian pharmaceutical companies making medicines for nearly all the world’s major drug companies is fuelling the creation of deadly superbugs, suggests new research. Global health authorities have no regulations in place to stop this happening.

A major study published this week in the prestigious scientific journal Infection found “excessively high” levels of antibiotic and antifungal drug residue in water sources in and around a major drug production hub in Hyderabad, as well as high levels of bacteria and fungi resistant to those drugs. Scientists told the Bureau the quantities found meant they believe the drug residues must have originated from pharmaceutical factories.

The presence of drug residues in the natural environment allows the microbes living there to build up resistance to the ingredients in the medicines that are supposed to kill them, turning them into what we call superbugs. The resistant microbes travel easily and have multiplied in huge numbers all over the world, creating a grave public health emergency that is already thought to kill hundreds of thousands of people a year.

When antimicrobial drugs stop working common infections can become fatal, and scientists and public health leaders say the worsening problem of antibiotic resistance (also known as AMR) could reverse half a century of medical progress if the world does not act fast. Yet while policies are being put into place to counter the overuse and misuse of drugs which has propelled the crisis, international regulators are allowing dirty drug production methods to continue unchecked.

Global authorities like the Food and Drug Administration and the European Medicines Agency strictly regulate drug supply chains in terms of drug safety – but environmental standards do not feature in their rulebook. Drug producers must adhere to Good Manufacturing Practices guidelines - but those guidelines do not cover pollution.

Even the World Health Organisation – a global public health body which has repeatedly called for concerted international action to tackle the dangerous threat of antibiotic resistance – buys antibiotics from companies whose drug ingredients are made in Hyderabad without carrying out environmental checks.

The international bodies say the governments of the countries where the drugs are made are the ones responsible for stopping pollution – but domestic legislation is having little impact on the ground, say the study’s authors. The lack of international regulation must be addressed, they argue, highlighting the grave public health threat faced by antibiotic resistance as well as the rampant global spread of superbugs from India, which has become an epicentre of the crisis.

‘Unprecedented antimicrobial drug contamination’

A group of scientists based at the University of Leipzig worked with German journalists to take an in-depth look at pharmaceutical pollution in Hyderabad, where 50% of India’s drug exports are produced. A fifth of the world’s generic drugs are produced in India, with factories based in Hyderabad supplying Big Pharma and public health authorities like World Health Organisation with millions of tons of antibiotics and antifungals each year.

The researchers tested 28 water samples in and around the Patancheru-Bollaram Industrial zone on the outskirts of the city, where more than than 30 drug manufacturing companies supplying nearly all the world’s major drug companies are based. Thousands of tons of pharmaceutical waste are produced by the factories each day, the paper says.

Almost all the samples contained bacteria and fungi resistant to multiple drugs (known as MDR pathogens, the technical name for superbugs). Researchers then tested 16 of the samples for drug residues and found 13 of them were contaminated with antibiotics and antifungals. Previous studies have shown how exposure to antibiotics and antifungals in the environment causes bacteria and fungi to develop immunity to those drugs.

 Antibiotic resistance tests; the bacteria in the culture on the left are sensitive to the antibiotics contained in the white paper discs. The bacteria on the right are resistant to most of the antibiotics. (Dr Graham Beards/Wikimedia Commons)
Antibiotic resistance tests; the bacteria in the culture on the left are sensitive to the antibiotics contained in the white paper discs. The bacteria on the right are resistant to most of the antibiotics. (Dr Graham Beards/Wikimedia Commons)

Environmental pollution and poor management of wastewater in Hyderabad is causing “unprecedented antimicrobial drug contamination” of surrounding water sources, conclude the researchers - contamination which appears to be driving the creation and spread of dangerous superbugs which have spread across the world. Combined with the mass misuse of antibiotics and poor sanitation, superbugs are already having severe consequences in India - an estimated 56,000 newborn babies die from resistant infections there each year.

German broadcaster NDR, which contributed to the study, identified 19 companies operating inside the area tested as suppliers of antibiotics to the European market. Of those 19, the Bureau has identified at least four companies which supply the UK and five which supply the US.

The companies in question strongly deny that their factories pollute the environment, and the sheer number of factories operating in Hyderabad means it is impossible to identify exactly which companies are responsible for the contamination found in the samples tested.

What is clear is one of the world’s biggest drug production hubs is producing dangerous levels of pharmaceutical pollution, and the international bodies tasked with ensuring drug safety are doing little to address it.

Health regulators have to take action, said Professor Ramanan Laxminarayan, director of the Center for Disease Dynamics, Economics & Policy and a leading voice on antibiotic resistance. “We need to take environmental contamination from bulk manufacturing facilities seriously and put an immediate end to the practice,” he said. “This should be a part of GMP without question and pharmaceutical companies throughout the world should be subject to an audit to ensure that they are compliant with what the industry has promised to do.”

The densely populated and increasingly prosperous city of Hyderabad in southern India was once an international trading centre for diamonds and pearls. Today, it is a major international hub for the pharmaceutical and biotech industries, producing millions of tons of medicines, chemicals and pesticides each year.

Around 170 companies making bulk drugs like antibiotics operate in and around Hyderabad, the majority clustered in sprawling industrial estates along the banks of the Musi river. Companies in Europe and the US, as well as health authorities like WHO and the UK’s NHS are reliant on drugs being produced in these factories.

The area has long been criticised for its pollution, which has continued unabated despite decades of campaigning by Indian NGOs, say the report authors. In 2009 the Patancheru-Bollaram zone was classified as “critically polluted” in India’s national pollution index and construction in the area was banned. But the government relaxed the rules in 2014 and building was allowed to begin again.

Last year India’s Supreme Court ordered the country’s pharmaceutical companies to operate a zero liquid waste policy, but “massive violations” have reportedly occurred, says the Infection report.

As India’s drug production industry has grown, so has the prevalence of superbugs – a national crisis intensified by the widespread overuse and misuse of antibiotics, which are easily bought over the counter, and poor sanitation Alongside the creation of individual superbugs, genes and enzymes have developed which can pass between multiple types of bacteria, making them resistant to drugs.

India has become the epicentre of the global drug resistance crisis, with 56,000 newborn Indian babies estimated to die each year from drug-resistant blood infections, and 70% to 90% of people who travel to India returning home with multi-drug-resistant bacteria in their gut, according to the study.

The bacteria can remain in the gut without causing problems, but if they travel from there into a patient’s bloodstream or urinary tract they can cause serious infections. They can also pass on resistance to other bacteria in the gut - so if a patient gets food poisoning the bacteria that caused it could acquire the resistance and become hard to treat.

Highest concentrations

Many previous studies have highlighted pharmaceutical pollution in India and China - which together produce most of the world’s antibiotics – and shown how such pollution fuels the proliferation of superbugs worldwide. The authors of the new Infection study set out to provide a detailed picture of the levels and types of pollution in Hyderabad and its links to drug resistance.

Researchers took water samples from rivers, lakes, groundwater, drinking water and surface water from rural and urban areas in and around the industrial estate, as well as pools near factories and water sources contaminated by sewage treatment plants. Four were taken from taps, one from a borehole, and the remaining 23 were classed as environmental samples.

The samples were tested for bacteria resistant to multiple drugs (known as MDR pathogens, the technical name for superbugs). The researchers then tested 16 of the samples for the antibiotics and antifungals used to treat infections.

All samples apart from one taken from tap water at a four star hotel were found to contain drug-resistant bacteria. All 23 environmental samples contained carbapenemase-producing bacteria - a group of bugs dubbed the “nightmare bacteria” because they are virtually untreatable and kill 40-50% of people whose blood gets infected with them.

Of the 16 samples then tested for drug residue, 13 were found to be contaminated with antibiotics and antifungals, some in disturbingly high levels. The researchers compared the levels of residue to limits recommended by leading microbiologists; once levels exceed those limits it is likely that superbugs will develop.

A sample taken from one sewer contained concentrations of the antifungal drug fluconazole – a drug used in ointments for fungal infections such as thrush and athlete’s foot or given intravenously for more serious infections – at levels 950,000 times higher than the recommended safe limit. The researchers repeatedly analysed this finding to make sure it was correct. “To our knowledge, this is the highest concentration of any drug ever measured in the environment,” wrote the authors.

Samples from sewers in the industrial area were also found to contain “extremely high concentrations” of nine different antibiotics. Levels of moxifloxacin – used to treat lung, skin and sinus infections as well as tuberculosis – were up to 5,500 times higher than the recommended limit, while another common antibiotic ciprofloxacin was found at levels up to 700 times above that recommended. Concentrations of the antibiotics clarithromycin and ampicillin were found at levels more than 100 times higher than the safe limit.

The amounts of antimicrobials found in the new tests were “eye-wateringly high”, said Dr Mark Holmes, a microbiologist at the University of Cambridge. “The quantities involved mean the amount in the water is almost the same as a therapeutic dose,” he said, calling on the Indian authorities to investigate immediately by testing each factory’s effluent. “That’s not just getting rid of a few tablets down the toilet.”

Pharmaceutical pollution is not the only way in which antibiotics get into the Indian environment – excrement from people and animals and waste from hospitals and farms also contain residues of the drugs. But some of the levels detected in the recent testing mean the residues can only have come from bulk manufacturing, according to scientists.

Flamingos at the Ameenpur Lake in Hyderabad. (Sanjeev Verma/HT Photo)
Flamingos at the Ameenpur Lake in Hyderabad. (Sanjeev Verma/HT Photo)

Professor Joakim Larsson, of the University of Gothenburg believes the levels of antimicrobials found could not be explained by anything else other than industrial discharges. “So it tells us that the problem is still there, it needs to be solved,” he told German journalists who worked on the report.

The pharmaceutical industry in Hyderabad produces “enormous amounts” of waste each day, says the Infection report. Effluent is transported in trucks to one waste treatment plant, it says, where it is treated before being sent to a mega sewage plant. There, it is mixed with sewage and further treated then discharged into the nearby Musi river.

Adhering to the zero liquid waste policy ordered by the Supreme Court requires expensive technology, and some waste is still clandestinely sent to the waste treatment plant or dumped straight into the surrounding environment, according to the report.

Virtually all of the world’s major drug companies are supplied by production plants in Hyderabad. Various companies whose factories are located next to or near sites where the water samples were taken supply the US and UK markets, though with such huge amounts of antibiotics present throughout the Indian environment it is impossible to concretely link specific factories to specific test results.

Using the Bulk Drug Manufacturing Industry’s 2015 manual, which lists all Indian drug manufacturers, their locations and their products, journalists at NDR were able to identify 19 companies operating in the Patancheru-Bollaram area which produce the antimicrobial drugs found in the water samples. (There may be other unnamed manufacturers operating in the area or companies which do not advertise which antimicrobials they produce.)

The Bureau has linked a number of these companies to the US and UK markets. MSN Pharmachem is one of the fastest growing drug manufacturers in India. It makes the raw ingredient of the antibiotic moxifloxacin on behalf of international drug companies Macleods and Sun Pharmaceuticals, which then turn it into a finished product supplied to the World Health Organisation.

Other major companies operating in the zone which supply the US and UK markets include Aurobindo, a leading Indian producer which exports to more than 150 countries around the globe, and Mylan, a company which claims its products fill one out of every 13 prescriptions dispensed in America. Mylan also supplies the European Union market, and says it is the fourth biggest supplier of generic (non-branded) drugs in the UK.

The companies strongly refute suggestions that their factories are responsible for pollution.

MSN Pharmachem said it conformed to the highest industry standards, applicable laws and regulations, and operated a zero discharge policy at its factories.

“Our sites are regularly monitored internally and inspected externally,” said a spokesperson. “We are committed to a clean environment, health of all our employees, neighbors, partners and customers.”

Aurobindo said it was impossible any pollution could have originated from its factories as it also operated a zero liquid waste policy – all waste is treated and recycled within the plants. It also said the topography and water flows of the relevant locations meant not even rainwater or drain water would be able to flow from its factories to the sample collection sites.

Mylan also said its factory could not have contributed to the residues identified by the researchers, as all its plants operated a zero liquid waste policy whereby all effluent is recycled and reused on site. It has its own wastewater treatment systems at all its Hyderabad plants, said a spokesperson, which use advanced technology to eliminate harmful waste. “These plants are operated 24 hours a day, seven days a week by qualified individuals,” said the statement.

Macleods and Sun Pharmaceuticals did not respond to requests for comment.

A WHO spokesperson said the organisation did not buy the drug ingredients, just the final medicine, and had no contact with ingredient manufacturers. “Manufacturing sites are typically inspected for Good Manufacturing Practice which focuses on ensuring consistent quality for the product in question from the perspective of human health risk,” said a statement. “GMP does not address waste management and environmental management measures vis-à- vis emissions and pollution control – as here relevant domestic environmental and industrial regulations would apply.”

No mention of pollution

There are reams of regulations and stipulations that manufacturers have to adhere to in order to export their products to the US and Europe – known as the Good Manufacturing Practices framework. These focus on making sure drugs are safe, pure, and effective.

Stringent inspections by the FDA, WHO and European authorities check that these rules are being followed.

However these regulations do not address environmental concerns. Inspectors have no mandate to sanction a factory for polluting, failing to treat its waste or other environmental problems – this falls within the remit of local governments.

Within India, there are environmental regulations covering what ingredients factories are allowed to produce, how they use water and how they dispose of their waste. In Hyderabad, the Telangana State Pollution Board inspects factories based on these.

However these inspection have been labelled toothless by local and international campaign groups. In November 2015, an analysis of TSPCB inspection reports by the Centre for Science and Environment in Delhi found that 15 bulk drug manufacturers within the Patancheru Bollaram industrial area were producing ingredients for which they did not have permission, using more water than the permitted limit, and dumping more effluents and hazardous waste than allowed.

Lots of promises have been made. More than 100 drug companies (including Mylan) signed a declaration at the World Economic Forum in Davos at the beginning of last year pledging to clean up production; commitments which were repeated in an industry roadmap released by 13 major manufacturers in the run-up to the first ever high-level United Nations meeting on antimicrobial resistance last September.

Last week the European Commission also published a roadmap acknowledging the release of antimicrobial ingredients into the environment during manufacture “may pose a risk.” It promised it would explore how to address the challenge in 2018, but fell short of committing to actual policy.

The UK government promised to take action on pollution in NHS supply chains following a previous Bureau report last October, but could not comment on whether this had been followed up due to purdah rules prohibiting any policy announcements in the run-up to an election.

And WHO, along with sister UN agencies, signed a “Statement of Intent” last December aimed at “advancing environmental and socially responsible procurement” of their health products. Just this week, WHO director-general Margaret Chan warned the world was moving towards a “post-antibiotic era” and called once again for concerted global action. She listed actions which were urgently needed, including cutting antibiotic prescriptions, developing new drugs, and coordinated government policies around the world. She did not mention pharmaceutical pollution.

The European Public Health Alliance, an umbrella group for more than 90 non-profit organisations, lambasted the failure of international regulators to do anything about the “rife” pollution which was a “clear cause” of AMR.

“This glaring omission must be rectified by including legally binding environmental standards in GMP protocols, particularly with regard to contamination with antimicrobial substances – as a condition for authorisation and import of drugs,” said a spokesperson. “Voluntary agreements are not enough to stop a race to the bottom, where pharmaceutical companies exploit weak links in global supply chains, in places where there is little or no enforcement of vital environmental standards.”

Tighter regulations on pollution must be introduced, said Dr Yohei Doi, Associate Professor of Medicine at the University of Pittsburgh School of Medicine, and it was up to international buyers of drugs such as the FDA to make this happen. “It’s the buyers in the US that pay for these things,” he said. “As long as people buy these drugs, the companies will keep making them in this way.”

This article was first published on The Bureau of Investigative Journalism.

We welcome your comments at letters@scroll.in.
Sponsored Content BY 

How sustainable farming practices can secure India's food for the future

India is home to 15% of the world’s undernourished population.

Food security is a pressing problem in India and in the world. According to the Food and Agriculture Organization of the UN (FAO), it is estimated that over 190 million people go hungry every day in the country.

Evidence for India’s food challenge can be found in the fact that the yield per hectare of rice, one of India’s principal crops, is 2177 kgs per hectare, lagging behind countries such as China and Brazil that have yield rates of 4263 kgs/hectare and 3265 kgs/hectare respectively. The cereal yield per hectare in the country is also 2,981 kgs per hectare, lagging far behind countries such as China, Japan and the US.

The slow growth of agricultural production in India can be attributed to an inefficient rural transport system, lack of awareness about the treatment of crops, limited access to modern farming technology and the shrinking agricultural land due to urbanization. Add to that, an irregular monsoon and the fact that 63% of agricultural land is dependent on rainfall further increase the difficulties we face.

Despite these odds, there is huge potential for India to increase its agricultural productivity to meet the food requirements of its growing population.

The good news is that experience in India and other countries shows that the adoption of sustainable farming practices can increase both productivity and reduce ecological harm.

Sustainable agriculture techniques enable higher resource efficiency – they help produce greater agricultural output while using lesser land, water and energy, ensuring profitability for the farmer. These essentially include methods that, among other things, protect and enhance the crops and the soil, improve water absorption and use efficient seed treatments. While Indian farmers have traditionally followed these principles, new technology now makes them more effective.

For example, for soil enhancement, certified biodegradable mulch films are now available. A mulch film is a layer of protective material applied to soil to conserve moisture and fertility. Most mulch films used in agriculture today are made of polyethylene (PE), which has the unwanted overhead of disposal. It is a labour intensive and time-consuming process to remove the PE mulch film after usage. If not done, it affects soil quality and hence, crop yield. An independently certified biodegradable mulch film, on the other hand, is directly absorbed by the microorganisms in the soil. It conserves the soil properties, eliminates soil contamination, and saves the labor cost that comes with PE mulch films.

The other perpetual challenge for India’s farms is the availability of water. Many food crops like rice and sugarcane have a high-water requirement. In a country like India, where majority of the agricultural land is rain-fed, low rainfall years can wreak havoc for crops and cause a slew of other problems - a surge in crop prices and a reduction in access to essential food items. Again, Indian farmers have long experience in water conservation that can now be enhanced through technology.

Seeds can now be treated with enhancements that help them improve their root systems. This leads to more efficient water absorption.

In addition to soil and water management, the third big factor, better seed treatment, can also significantly improve crop health and boost productivity. These solutions include application of fungicides and insecticides that protect the seed from unwanted fungi and parasites that can damage crops or hinder growth, and increase productivity.

While sustainable agriculture through soil, water and seed management can increase crop yields, an efficient warehousing and distribution system is also necessary to ensure that the output reaches the consumers. According to a study by CIPHET, Indian government’s harvest-research body, up to 67 million tons of food get wasted every year — a quantity equivalent to that consumed by the entire state of Bihar in a year. Perishables, such as fruits and vegetables, end up rotting in store houses or during transportation due to pests, erratic weather and the lack of modern storage facilities. In fact, simply bringing down food wastage and increasing the efficiency in distribution alone can significantly help improve food security. Innovations such as special tarpaulins, that keep perishables cool during transit, and more efficient insulation solutions can reduce rotting and reduce energy usage in cold storage.

Thus, all three aspects — production, storage, and distribution — need to be optimized if India is to feed its ever-growing population.

One company working to drive increased sustainability down the entire agriculture value chain is BASF. For example, the company offers cutting edge seed treatments that protect crops from disease and provide plant health benefits such as enhanced vitality and better tolerance for stress and cold. In addition, BASF has developed a biodegradable mulch film from its ecovio® bioplastic that is certified compostable – meaning farmers can reap the benefits of better soil without risk of contamination or increased labor costs. These and more of the company’s innovations are helping farmers in India achieve higher and more sustainable yields.

Of course, products are only one part of the solution. The company also recognizes the importance of training farmers in sustainable farming practices and in the safe use of its products. To this end, BASF engaged in a widespread farmer outreach program called Samruddhi from 2007 to 2014. Their ‘Suraksha Hamesha’ (safety always) program reached over 23,000 farmers and 4,000 spray men across India in 2016 alone. In addition to training, the company also offers a ‘Sanrakshan® Kit’ to farmers that includes personal protection tools and equipment. All these efforts serve to spread awareness about the sustainable and responsible use of crop protection products – ensuring that farmers stay safe while producing good quality food.

Interested in learning more about BASF’s work in sustainable agriculture? See here.

This article was produced by the Scroll marketing team on behalf of BASF and not by the Scroll editorial team.