Research Digest

Lab notes: Decoding the genetics of HIV strains found in India

The findings can benefit both the clinical management of HIV-1 patients and indicate epidemiological trends.

The Human immunodeficiency Virus or HIV continues to engage scientists because of its complex nature. A team of scientists from India, United Kingdom and Spain have isolated near full genomes of HIV virus from a subset of South Indian patients – a subtype known as HIV clade C.

Because HIV exhibits huge genetic diversity, the virus undergoes frequent genomic changes and each new variant differs in its response to therapy. Examining the entire viral genome can thus offer new clues for understanding infection dynamics and tracing the evolutionary history of different strains. For this, researchers made tweaked existing method for isolating and sequencing the viral genome.

The researchers first isolated the virus from blood of 20 patients. But, unlike previous method where four overlapping fragments of viral RNA were amplified, the scientists selected six overlapping RNA fragments for sequencing.

This tweak was to ensure good data acquisition for HIV clade C. It also helped in improving efficiency and coverage of prominent viral genes – env and gag. Once multiple copies of these fragments were ready, genetic code inscribed in different RNA slices was decoded by an Illumina sequencer. Next, the fragments were arranged in correct order by referring to the existing HIV clade C genomes recorded in the viral genome database.

In this way, scientists could generate nine near full-length viral genome sequences. In the remaining samples, good sequence recovery was achieved across prominent viral genes like gag and env. Phylogenetic analysis reveals that in 18 cases the virus belonged to HIV clade C; one belonged to AIC type and the other resembled the B type. This shows that minor clades of A and B type are also prevalent in the population which must have given rise to the recombinant AIC form.

“The classification of HIV-1 genome into clades is based upon several factors, an important one being the geographic source of the virus,” said Dr Shahid Jameel, an Indian virologist and CEO of Wellcome Trust DBT India Alliance who was not involved with the study. In India and South Africa, clade C is particularly rampant.

“Since the early 1990s, India has a predominance of clade C HIV 1. This study used next-generation sequencing to obtain near full-length sequences and arrive at the same result. In that sense there is little novelty,” added Jameel.

Researchers have also traced evolutionary origins of the variants. They compared similarities in the isolated genomic sequences with those that are recorded in the genomic database. The Indian clade C was found to be closely related to the African lineage whereas the recombinant forms are believed to originate spontaneously.

These finding may have implications for disease control. “While refinement of amplification protocols, sequencing platforms and bioinformatics tools for analysis of this kind of data are ongoing and likely to supersede the current study, application of techniques and approaches described here will benefit both the clinical management of HIV-1 patients, but will further allow a more precise description of molecular epidemiological trends and direction in specific geographical locales,” the study has concluded.

The research team included Shuba Varshini Alampalli, Raghavan Sampathkumar, Karthi Sivaraman and Annapurna Vyakarnam (Indian Institute of Science, Bengaluru); Michael M Thomson (Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo, Majadahonda, Madrid); Anto Jesuraj UKJ, Chirag Dhar and George D’Souza (St John’s Research Institute, Bengaluru), and Neil Berry (NIBSC, United Kingdom). The study was recently published in journal PLoS One.

This article was first published in India Science Wire.

Support our journalism by subscribing to Scroll+ here. We welcome your comments at letters@scroll.in.
Sponsored Content BY 

Do you really need to use that plastic straw?

The hazards of single-use plastic items, and what to use instead.

In June 2018, a distressed whale in Thailand made headlines around the world. After an autopsy it’s cause of death was determined to be more than 80 plastic bags it had ingested. The pictures caused great concern and brought into focus the urgency of the fight against single-use plastic. This term refers to use-and-throw plastic products that are designed for one-time use, such as takeaway spoons and forks, polythene bags styrofoam cups etc. In its report on single-use plastics, the United Nations Environment Programme (UNEP) has described how single-use plastics have a far-reaching impact in the environment.

Dense quantity of plastic litter means sights such as the distressed whale in Thailand aren’t uncommon. Plastic products have been found in the airways and stomachs of hundreds of marine and land species. Plastic bags, especially, confuse turtles who mistake them for jellyfish - their food. They can even exacerbate health crises, such as a malarial outbreak, by clogging sewers and creating ideal conditions for vector-borne diseases to thrive. In 1988, poor drainage made worse by plastic clogging contributed to the devastating Bangladesh floods in which two-thirds of the country was submerged.

Plastic litter can, moreover, cause physiological harm. Burning plastic waste for cooking fuel and in open air pits releases harmful gases in the air, contributing to poor air quality especially in poorer countries where these practices are common. But plastic needn’t even be burned to cause physiological harm. The toxic chemical additives in the manufacturing process of plastics remain in animal tissue, which is then consumed by humans. These highly toxic and carcinogenic substances (benzene, styrene etc.) can cause damage to nervous systems, lungs and reproductive organs.

The European Commission recently released a list of top 10 single-use plastic items that it plans to ban in the near future. These items are ubiquitous as trash across the world’s beaches, even the pristine, seemingly untouched ones. Some of them, such as styrofoam cups, take up to a 1,000 years to photodegrade (the breakdown of substances by exposure to UV and infrared rays from sunlight), disintegrating into microplastics, another health hazard.

More than 60 countries have introduced levies and bans to discourage the use of single-use plastics. Morocco and Rwanda have emerged as inspiring success stories of such policies. Rwanda, in fact, is now among the cleanest countries on Earth. In India, Maharashtra became the 18th state to effect a ban on disposable plastic items in March 2018. Now India plans to replicate the decision on a national level, aiming to eliminate single-use plastics entirely by 2022. While government efforts are important to encourage industries to redesign their production methods, individuals too can take steps to minimise their consumption, and littering, of single-use plastics. Most of these actions are low on effort, but can cause a significant reduction in plastic waste in the environment, if the return of Olive Ridley turtles to a Mumbai beach are anything to go by.

To know more about the single-use plastics problem, visit Planet or Plastic portal, National Geographic’s multi-year effort to raise awareness about the global plastic trash crisis. From microplastics in cosmetics to haunting art on plastic pollution, Planet or Plastic is a comprehensive resource on the problem. You can take the pledge to reduce your use of single-use plastics, here.

This article was produced by the Scroll marketing team on behalf of National Geographic, and not by the Scroll editorial team.