Medical research

Scientists are creating organs on chips to study the human body better

Recreating simple, specific human bodily systems seems to be the most valuable path to improving our drug development process.

In 1537, Swiss physician Paracelsus came up with a method to craft a tiny model human: fill a gourd with human semen and put it in the womb of a horse to putrefy. The resulting transparent form must be fed with human blood for 40 weeks and kept warm by the horse, after which point a miniature child should grow.

History does not record if Paracelsus’ attempts were successful, and the lack of miniature children running around the world today suggests they probably weren’t. But our fascination with the idea of creating model people – simplified versions of our human ecosystems – has endured. We long to make computer brains, synthetic hearts, to watch full-fledged organs grow in labs. The instinct to simulate is part of our instinct to study and understand, and biological physicists continue to pursue the dream of model humans, with systems that perform like our own.

Testing on rats is the classic way we’ve simulated human biology. We share a large amount of genetic material with all mammals, including rats, and almost all human genes known to be associated with diseases have counterparts in the rat genome. But there are also major differences – circadian rhythms play a big role in pharmacology and toxicology, and rats are nocturnal.

Another alternative is to test drugs on parts of an organ – or the entire thing – in test tubes. This preserves the organ’s structure and layout, but it requires both careful handling and a regular supply of fresh organs – and when an organ is studied away from the body, it’s easy to miss interactions between it and other parts of the body. A drug that seems safe when tested on heart and liver cells separately might reveal a lethal transformation when it travels through a whole human test subject.

Today, the state of the art in attempts to model the insides of our bodies lies in the creation of “organs on chips”. They are generally a piece of glass, silicon, or polymer about the size of a computer memory stick.

Each chip can model a specific organ system, like the lungs, bone marrow, or intestines. Tiny tunnels run through the clear polymer chip, arranged to mimic normal – or even diseased – organ structures, so researchers can study what happens inside in great detail. These are abstractions: they won’t necessarily look like the real thing, in the same way that a subway map represents a city without actually looking like it. As long as they connect up in the same way as the real thing, they’re accurate.

Fluids and gases containing living human cells can then be piped down those channels, kept moving by mechanical or electrical stimulation and continually monitored by sensors or microscopes at key locations. Controlled, sterile conditions allow cell growth and other processes to happen without outside influence, and it’s even possible to simulate mechanical processes like beating hearts, or varying stresses like flexing muscles.

Organs on chips, more commonly called “microphysiological systems,” have vast potential, catching the attention (and financial backing) of not only the National Institutes of Health, but also of the Defense Advanced Research Projects Agency, or DARPA. Harvard’s Wyss Institute created the first successful organ chip, a miniature lung, in 2010, earning it a $37 million DARPA grant. DARPA, which has funded multiple microphysiological systems, says it’s interested in how these simulations of body parts can help defense departments create vaccines, respond to pandemics, or even prepare bioterrorism countermeasures as quickly as possible.

Image: Eden Brackenbury
Image: Eden Brackenbury

Enter John Wikswo, a founding director of Vanderbilt Institute for Integrative Biosystems Research and Education. Wikswo recently led a research team in creating an advanced model of the blood-brain barrier. The blood-brain barrier is a vital part of the brain system: it consists of specialized cells that surround the brain’s veins and arteries, and it acts a bit like security at a nightclub. Nutrients and other important things are allowed through, but substances like pathogens and toxins that will be harmful to the brain are stopped in their tracks.

Wikswo’s team is using this model to study brain inflammation – which some neuroscientists call a “silent killer.” There is no pain involved in brain inflammation, but it contributes to conditions like Alzheimer’s and Parkinson’s disease, and may be behind a much wider range of problems, from poor cognition to schizophrenia and depression.

Drug makers can use the model to address the challenge of how to get drugs “past” this barrier and directly into the brain. “There are variations in melatonin, cortisol, and all sorts of other hormones that differ from organ to organ,” says Wikswo. “What we’re claiming is that organs on chips, and the technology for which they are developed, will allow you to re-create these variations in vitro.”

By getting human cells involved in drug development earlier in the pipeline, Wisko explains, new treatments can be brought to market more rapidly. Recent estimates place the cost of successfully developing a single new drug at $2.5 billion or more over the course of about 12 years. Advancements in efficiency or accuracy are crucial to lowering those costs.

Image: Eden Brackenbury
Image: Eden Brackenbury

But how well do these chips work together? In order to avoid the problem of missed interactions between different organs, it’s useful to be able to feed a drug through a complete biological system. If you patched together enough different organ chips, would you get a tiny human like the one Paracelsus envisioned? In a sense, yes, says Wikswo. These different human organ chips talk amongst themselves as they would in a “real” human body, and that makes it a safer way to quickly study new disease treatments than using rats or tissue samples alone.

While we may view these collections of glued-together chips as “little humans” for the purpose of medical modeling, they aren’t really “people” – no mind, no plasticity, no environment, no learning. Wikswo and his team are now working toward creating a brain on a chip with multiple regions – “collections of neurons of one flavor, talking through synapses to nearby neurons of another flavor,” he says. “We’re getting ready to put the neurons on electrode rays, so we can see how the neurons respond, in their electrical behavior, to drugs crossing barrier. We’re ratcheting up the realism, by including electrons.”

But a chip-based model of multiple brain systems would not be particularly intelligent –it would be too small. “A micro-brain is the size of a mouse brain, and mice are not particularly intelligent,” Wikswo says. “There will be people successfully building neural nets on electrodes in two or three dimensions, who can do computations – but that is not a fully-functioning brain. I don’t think anyone is talking about building a functioning brain.”

For now, recreating simple, specific human bodily systems seems to be the most valuable path to improving our drug development process and getting a better grasp of what’s happening inside of our bodies. “Genomics has brought us a very clear understanding of the individual parts,” Wikswo says. “But physiology is all those parts, working together.”

This article was first published on How We Get To Next.

Support our journalism by subscribing to Scroll+ here. We welcome your comments at letters@scroll.in.
Sponsored Content BY 

Following a mountaineer as he reaches the summit of Mount Everest

Accounts from Vikas Dimri’s second attempt reveal the immense fortitude and strength needed to summit the Everest.

Vikas Dimri made a huge attempt last year to climb the Mount Everest. Fate had other plans. Thwarted by unfavourable weather at the last minute, he came so close and yet not close enough to say he was at the top. But that did not deter him. Vikas is back on the Everest trail now, and this time he’s sharing his experiences at every leg of the journey.

The Everest journey began from the Lukla airport, known for its dicey landing conditions. It reminded him of the failed expedition, but he still moved on to Namche Bazaar - the staging point for Everest expeditions - with a positive mind. Vikas let the wisdom of the mountains guide him as he battled doubt and memories of the previous expedition. In his words, the Everest taught him that, “To conquer our personal Everest, we need to drop all our unnecessary baggage, be it physical or mental or even emotional”.

Vikas used a ‘descent for ascent’ approach to acclimatise. In this approach, mountaineers gain altitude during the day, but descend to catch some sleep. Acclimatising to such high altitudes is crucial as the lack of adequate oxygen can cause dizziness, nausea, headache and even muscle death. As Vikas prepared to scale the riskiest part of the climb - the unstable and continuously melting Khumbhu ice fall - he pondered over his journey so far.

His brother’s diagnosis of a heart condition in his youth was a wakeup call for the rather sedentary Vikas, and that is when he started focusing on his health more. For the first time in his life, he began to appreciate the power of nutrition and experimented with different diets and supplements for their health benefits. His quest for better health also motivated him to take up hiking, marathon running, squash and, eventually, a summit of the Everest.

Back in the Himalayas, after a string of sleepless nights, Vikas and his team ascended to Camp 2 (6,500m) as planned, and then descended to Base Camp for the basic luxuries - hot shower, hot lunch and essential supplements. Back up at Camp 2, the weather played spoiler again as a jet stream - a fast-flowing, narrow air current - moved right over the mountain. Wisdom from the mountains helped Vikas maintain perspective as they were required to descend 15km to Pheriche Valley. He accepted that “strength lies not merely in chasing the big dream, but also in...accepting that things could go wrong.”

At Camp 4 (8,000m), famously known as the death zone, Vikas caught a clear glimpse of the summit – his dream standing rather tall in front of him.

It was the 18th of May 2018 and Vikas finally reached the top. The top of his Everest…the top of Mount Everest!

Watch the video below to see actual moments from Vikas’ climb.

Play

Vikas credits his strength to dedication, exercise and a healthy diet. He credits dietary supplements for helping him sustain himself in the inhuman conditions on Mount Everest. On heights like these where the oxygen supply drops to 1/3rd the levels on the ground, the body requires 3 times the regular blood volume to pump the requisite amount of oxygen. He, thus, doesn’t embark on an expedition without double checking his supplements and uses Livogen as an aid to maintain adequate amounts of iron in his blood.

Livogen is proud to have supported Vikas Dimri on his ambitious quest and salutes his spirit. To read more about the benefits of iron, see here. To read Vikas Dimri’s account of his expedition, click here.

This article was produced by the Scroll marketing team on behalf of Livogen and not by the Scroll editorial team.