Myth busting

Chronic disease is not inevitable or natural, even with age

To stem the rising tide of chronic disease, we must alter the elements of our environment.

In the 1830s, British settlers in New Zealand imported European rabbits for food and sport. With no native predators, the rabbits soon took over. Accounts from the period describe thousands of hectares run through with burrows, and huge tracts of arable land destroyed by overgrazing.

In a desperate bid to stem the scourge, the New Zealanders brought in a natural predator of the rabbit – ferrets. Without native predators to pick them off, the new imports did well. But they also played a prominent role in the decline of several endangered bird species, including the kiwi, the weka, and the kakapo. It’s a familiar parable (Mark Twain even riffed on it) about unintended consequences, and the danger of applying reductionist logic to a world that is characterised by extraordinary interdependence and complexity.

As a physician, I can’t help but be reminded of ferrets in New Zealand as I write prescriptions for the drugs we use to manage chronic disease. Hydrochlorothiazide for high blood pressure. Sulfonylureas, a class of medication used to treat Type 2 diabetes. Statins for heart disease.

Don’t get me wrong, these drugs work. They absolutely save lives. But the human body is a precisely interdependent system, and these drugs are like sledgehammers. The ferrets did kill rabbits, but they were such an indelicate intervention that they wrought their own special havoc on the native ecosystem. The kakapo might never again be seen on the New Zealand mainland. How much collateral damage are we inflicting on the human ecosystem with our powerful medicines?

Perhaps more than we think. Hydrochlorothiazide, a widespread treatment for high blood pressure, increases haemoglobin A1C and impairs glucose tolerance. These are indices of insulin resistance, which is associated with diabetes, obesity, cardiovascular disease and dementia. Hydrochlorothiazide raises LDL cholesterol and triglycerides, and lowers HDL cholesterol – a pattern known to confer increased risk of cardiovascular disease.

Sulfonylureas have been shown to increase the risk of cardiovascular disease as well.

And statins, some of the most widely prescribed drugs in the United States, have been found to impair glucose tolerance and increase the risk of diabetes.

While there is no doubt that the collective benefit of these medications currently outweighs their adverse effects, it’s remarkable that many of the drugs we give to treat chronic disease can actually increase the risk of those selfsame diseases. It speaks to the intricacy of human biology, and to the crudity of even our most advanced pharmaceuticals. Twain would have loved the irony.

External forces of chronic disease

The hope of academic medicine is that research ­– especially in molecular biology and pharmaceuticals – will save us. As we zero in on the elusive, primordial mechanisms of disease, we can design ever more precise pharmaceuticals, or even cures.

But rather than producing any outright cures for chronic disease, decades of basic science research seem to have yielded a different kind of truth – that the human body is an incredibly, devilishly complex system. The deeper we dig, the more convoluted becomes the pathophysiology of chronic disease. What has become clear is that these chronic diseases – high blood pressure, diabetes, cardiovascular disease – are manifestations of aberrant metabolisms, rather than a lone faulty switch buried somewhere within our cells.

There seem to be no silver bullets. Causation at the molecular level, deep inside the body, appears to be beyond our current reach. But what about pushing against the ultimate cause – not within us, but in the outside world? Are we fated to follow the New Zealanders’ folly, causing damage with every effort to treat? Or, can we learn what external forces have made us so chronically ill, and push back there?

Perhaps we can. It turns out that traditional cultures across the globe, from hunter-gatherers to pastoralists to horticulturists, have shown little evidence of chronic disease. It’s not because they don’t live long enough – recent analysis has found a common lifespan of up to 78 years among hunter-gatherers, once the bottlenecks of high mortality in infancy and young adulthood are bypassed. We can’t blame genes, since many of these groups appear to be more genetically susceptible to chronic disease than those of European descent.

Evidence suggests it is how they live. Though traditional cultures span an immensely diverse gamut of lifestyles, they share a common denominator defined by the absence of modern banes: absence of processed foodstuffs, absence of sedentary lifestyle, and likely absence of chronic stressors.

The lifestyle factor

Indeed, evidence suggests that lack of chronic disease in these groups flows from how they live, how they move, how they eat. Diet looks to be an especially powerful driver – adoption of a Western diet, rich in processed foods, has mirrored the development of chronic disease worldwide, and prospective studies with healthy and diabetic subjects have documented the powerful influence of food on health. Physical exercise, long touted as merely a means to calorie disposal, turns out to have complex endocrine and metabolic effects on insulin signalling, stress response, sleep, mental health, and even neuronal function in the brain. What the science seems to say is that an ancestral way of life aligns the machinery of our metabolisms toward good health.

Thus it appears that our bodies aren’t, after all, destined for chronic disease as they age – rather, it is the environment we’ve put them in that should bear the blame.

But isn’t this obvious? Yes, physicians and public health researchers have long acknowledged the influence of environmental elements on health, but we remain beholden to a paradigm that places first priority on mastery of molecular mechanisms. The sophistication of our sciences is a triumph, and technological progress must no doubt continue. But we know enough about the environmental determinants of health to act, even if we don’t fully understand the mechanisms.

Our ship is sinking, and the current approach is akin to bailing with a thimble. If we are to stem the rising tide of chronic disease, we must alter the elements of our environment that promote chronic disease. With the global price tag of chronic disease projected to rise to $30 trillion by 2030, we simply can’t afford not to.

The writer is a medical resident at the Massachusetts General Hospital in Boston.

This article was first published on Aeon.

We welcome your comments at letters@scroll.in.
Sponsored Content BY 

What’s the difference between ‘a’ washing machine and a ‘great’ washing machine?

The right machine can save water, power consumption, time, energy and your clothes from damage.

In 2010, Hans Rosling, a Swedish statistician, convinced a room full of people that the washing machine was the greatest invention of the industrial revolution. In the TED talk delivered by him, he illuminates how the washing machine freed women from doing hours of labour intensive laundry, giving them the time to read books and eventually join the labour force. Rosling’s argument rings true even today as it is difficult to deny the significance of the washing machine in our everyday lives.

For many households, buying a washing machine is a sizable investment. Oddly, buyers underestimate the importance of the decision-making process while buying one and don’t research the purchase as much as they would for a television or refrigerator. Most buyers limit their buying criteria to type, size and price of the washing machine.

Visible technological advancements can be seen all around us, making it fair to expect a lot more from household appliances, especially washing machines. Here are a few features to expect and look out for before investing in a washing machine:

Cover your basics

Do you wash your towels every day? How frequently do you do your laundry? Are you okay with a bit of manual intervention during the wash cycle? These questions will help filter the basic type of washing machine you need. The semi-automatics require manual intervention to move clothes from the washing tub to the drying tub and are priced lower than a fully-automatic. A fully-automatic comes in two types: front load and top load. Front loading machines use less water by rotating the inner drum and using gravity to move the clothes through water.

Size matters

The size or the capacity of the machine is directly proportional to the consumption of electricity. The right machine capacity depends on the daily requirement of the household. For instance, for couples or individuals, a 6kg capacity would be adequate whereas a family of four might need an 8 kg or bigger capacity for their laundry needs. This is an important factor to consider since the wrong decision can consume an unnecessary amount of electricity.

Machine intelligence that helps save time

In situations when time works against you and your laundry, features of a well-designed washing machine can come to rescue. There are programmes for urgent laundry needs that provide clean laundry in a super quick 15 to 30 minutes’ cycle; a time delay feature that can assist you to start the laundry at a desired time etc. Many of these features dispel the notion that longer wash cycles mean cleaner clothes. In fact, some washing machines come with pre-activated wash cycles that offer shortest wash cycles across all programmes without compromising on cleanliness.

The green quotient

Despite the conveniences washing machines offer, many of them also consume a substantial amount of electricity and water. By paying close attention to performance features, it’s possible to find washing machines that use less water and energy. For example, there are machines which can adjust the levels of water used based on the size of the load. The reduced water usage, in turn, helps reduce the usage of electricity. Further, machines that promise a silent, no-vibration wash don’t just reduce noise – they are also more efficient as they are designed to work with less friction, thus reducing the energy consumed.

Customisable washing modes

Crushed dresses, out-of-shape shirts and shrunken sweaters are stuff of laundry nightmares. Most of us would rather take out the time to hand wash our expensive items of clothing rather than trusting the washing machine. To get the dirt out of clothes, washing machines use speed to first agitate the clothes and spin the water out of them, a process that takes a toll on the fabric. Fortunately, advanced machines come equipped with washing modes that control speed and water temperature depending on the fabric. While jeans and towels can endure a high-speed tumble and spin action, delicate fabrics like silk need a gentler wash at low speeds. Some machines also have a monsoon mode. This is an India specific mode that gives clothes a hot rinse and spin to reduce drying time during monsoons. A super clean mode will use hot water to clean the clothes deeply.

Washing machines have come a long way, from a wooden drum powered by motor to high-tech machines that come equipped with automatic washing modes. Bosch washing machines include all the above-mentioned features and provide damage free laundry in an energy efficient way. With 32 different washing modes, Bosch washing machines can create custom wash cycles for different types of laundry, be it lightly soiled linens, or stained woollens. The ActiveWater feature in Bosch washing machines senses the laundry load and optimises the usage of water and electricity. Its EcoSilentDrive motor draws energy from a permanent magnet, thereby saving energy and giving a silent wash. The fear of expensive clothes being wringed to shapelessness in a washing machine is a common one. The video below explains how Bosch’s unique VarioDrumTM technology achieves damage free laundry.

Play

To start your search for the perfect washing machine, see here.

This article was produced by the Scroll marketing team on behalf of Bosch and not by the Scroll editorial team.