smart technology

IITs are on a quest to develop self-driving cars for India’s crazy roads

All the hardware and technology will need some serious adaptation for India’s extraordinary streets.

At the moment, SeDriCa isn’t much of a looker: it resembles a couple of stacked cardboard boxes precariously balanced atop three wheels. It’s not much of a mover either. Mounted with a beacon light, the vehicle ungracefully rambles along narrow, marked routes, usually on playgrounds, at a reluctant pace.

But Ankit Sharma and Rishabh Choudhary, final year students at the Indian Institute of Technology -Bombay, are convinced that the ungainly three-wheeler can provide the foundation for developing a driverless car for Indian streets. The duo leads the SeDriCa (short for self-driving car) project at the institute’s Unmesh Mashruwala Innovation Cell, where successive batches of students from multiple engineering streams have been working to develop an autonomous car since 2011.

They aren’t the only ones. For over a decade, IIT-Kharagpur, too, has been working to develop autonomous ground vehicles; similar research is underway in IIT-Kanpur. At India’s most elite engineering schools, the dream of driverless cars on Indian roads is turning into something of an obsession.

But for all their research into autonomous vehicles, all three IITs are working separately with scarcely any collaboration between the teams. With years of experience on the subject, it might make sense for these institutions to work together.

Nevertheless, it’s a useful fixation to have at a time when global carmakers and tech giants are throwing money and resources to develop self-driving cars. But all that hardware and technology will need some serious adaptation to be able to work on India’s extraordinary streets, where bovines, cars, pedestrians, and other assorted jalopies compete for space.

Made in India

In 2016, SeDriCa ranked fourth out of 36 teams from across the world at the Intelligent Ground Vehicle Competition, an annual student contest held at Oakland University. The competition involves avoiding obstacles, navigating a track while staying between the white lanes, and reaching specific global positioning system points.

Play

SeDriCa, which measures two feet by three feet, has an on-board GPS device, an inertial measurement unit that calculates motion and wheel encoders that track movement. A vision system on the vehicle is used to detect the lanes and LiDAR, a remote sensing technology that uses laser light, is employed to steer clear of static obstacles. All the data from these devices is collected and analysed by a set of algorithms to guide the vehicle along the required route.

The IIT-Bombay team is now working to adapt this technology for a small car for the Driverless Car Challenge of the Rise Prize, an innovation contest under the aegis of the Mahindra Group. Thirty one shortlisted teams must build a driverless car for Indian conditions, which will first be tested in a controlled environment, like a university campus, and then on city streets.

Sharma, Choudhary, and the rest of the team are still waiting to get their hands on the Mahindra E20, a four-door electric car that they’ll try and transform into a self-driving vehicle. After their experience with SeDriCa, they’re sure of pulling it off with around six months of testing.

Already, they are trying out some of the technology on the SeDriCa, which they’ll need to fine-tune on the E20. “The algorithms that we have implemented, they are working,” explained Choudhary, 21, a chemical engineering student who is the team lead on the Rise Prize. “For example, our positioning system is working on the roads. Even when the road is covered by trees, we have good positioning.”

“We are working on other sensors also,” he added. “We have completed pedestrian detection, so it can detect pedestrians and some types of vehicles.” Much more remains to be done, including developing and testing the vehicle’s ability to recognise and deal with traffic lights, road signs, and speed breakers.

From mine rescue to the road

The challenges aren’t much different for the Autonomous Ground Vehicle Research Group at IIT-Kharagpur, also competing for the Rise Prize. The Autonomous Ground Vehicle traces its roots to research that began at the institute around 2004. “There was a need for coming up with an autonomous rescue robot for mining applications,” recalled Debashish Chakravarty, an associate professor at the IIT’s mining engineering department, who heads the project.

By 2008, a group of PhD students from the computer science department got to work on building a driverless car, which then led to an IIT-Kharagpur team participating in the 2012 Intelligent Ground Vehicle Competition. “We actually have a test purpose robot, which was built from scratch and is used on a small portion of the campus road to run autonomously,” said Chakravarty. “And now, we are trying to fine-tune the technology for Indian roads.”

In 2013, a group of three students from IIT-Kharagpur spun off a company, Auro Robotics, to build autonomous shuttles for transportation within campuses, such as universities and corporate parks. Auro, backed by Y Combinator, a prominent Silicon Valley accelerator-turned-seed fund, is already testing driverless shuttles at California’s Santa Clara University. Last year, it raised $2 million to roll out autonomous shuttles across US universities.

Meanwhile, at IIT-Kanpur, Gaurav Pandey, an assistant professor in the electrical engineering department, is also on the bandwagon. A former research scientist at Ford’s automated driving group based in Dearborn, Michigan, Pandey is currently working on developing autonomous vehicle technology for a foreign carmaker. He declined to provide details of the project, which is backed by IIT-Kanpur, due to confidentiality considerations.

“I am mostly looking at the problem from the western perspective right now, so I haven’t really thought about how it will be translated to an Indian condition,” Pandey explained. “But we have started to look at it.”

“We have another project where we have outfitted a car with multiple sensors that are being used by these autonomous cars and we have started collecting data from outside the IIT-Kanpur campus, and within the campus also,” he added. Pandey and his team are collecting camera and LiDAR data from these trips to understand how traffic in Indian conditions differs from roads in the US and elsewhere.

After all, the driverless technology that works in California will scarcely suffice for Kanpur’s Chaman Ganj.

This article first appeared on Quartz.

We welcome your comments at letters@scroll.in.
Sponsored Content BY 

Relying on the power of habits to solve India’s mammoth sanitation problem

Adopting three simple habits can help maximise the benefits of existing sanitation infrastructure.

India’s sanitation problem is well documented – the country was recently declared as having the highest number of people living without basic sanitation facilities. Sanitation encompasses all conditions relating to public health - especially sewage disposal and access to clean drinking water. Due to associated losses in productivity caused by sickness, increased healthcare costs and increased mortality, India recorded a loss of 5.2% of its GDP to poor sanitation in 2015. As tremendous as the economic losses are, the on-ground, human consequences of poor sanitation are grim - about one in 10 deaths, according to the World Bank.

Poor sanitation contributes to about 10% of the world’s disease burden and is linked to even those diseases that may not present any correlation at first. For example, while lack of nutrition is a direct cause of anaemia, poor sanitation can contribute to the problem by causing intestinal diseases which prevent people from absorbing nutrition from their food. In fact, a study found a correlation between improved sanitation and reduced prevalence of anaemia in 14 Indian states. Diarrhoeal diseases, the most well-known consequence of poor sanitation, are the third largest cause of child mortality in India. They are also linked to undernutrition and stunting in children - 38% of Indian children exhibit stunted growth. Improved sanitation can also help reduce prevalence of neglected tropical diseases (NTDs). Though not a cause of high mortality rate, NTDs impair physical and cognitive development, contribute to mother and child illness and death and affect overall productivity. NTDs caused by parasitic worms - such as hookworms, whipworms etc. - infect millions every year and spread through open defecation. Improving toilet access and access to clean drinking water can significantly boost disease control programmes for diarrhoea, NTDs and other correlated conditions.

Unfortunately, with about 732 million people who have no access to toilets, India currently accounts for more than half of the world population that defecates in the open. India also accounts for the largest rural population living without access to clean water. Only 16% of India’s rural population is currently served by piped water.

However, there is cause for optimism. In the three years of Swachh Bharat Abhiyan, the country’s sanitation coverage has risen from 39% to 65% and eight states and Union Territories have been declared open defecation free. But lasting change cannot be ensured by the proliferation of sanitation infrastructure alone. Ensuring the usage of toilets is as important as building them, more so due to the cultural preference for open defecation in rural India.

According to the World Bank, hygiene promotion is essential to realise the potential of infrastructure investments in sanitation. Behavioural intervention is most successful when it targets few behaviours with the most potential for impact. An area of public health where behavioural training has made an impact is WASH - water, sanitation and hygiene - a key issue of UN Sustainable Development Goal 6. Compliance to WASH practices has the potential to reduce illness and death, poverty and improve overall socio-economic development. The UN has even marked observance days for each - World Water Day for water (22 March), World Toilet Day for sanitation (19 November) and Global Handwashing Day for hygiene (15 October).

At its simplest, the benefits of WASH can be availed through three simple habits that safeguard against disease - washing hands before eating, drinking clean water and using a clean toilet. Handwashing and use of toilets are some of the most important behavioural interventions that keep diarrhoeal diseases from spreading, while clean drinking water is essential to prevent water-borne diseases and adverse health effects of toxic contaminants. In India, Hindustan Unilever Limited launched the Swachh Aadat Swachh Bharat initiative, a WASH behaviour change programme, to complement the Swachh Bharat Abhiyan. Through its on-ground behaviour change model, SASB seeks to promote the three basic WASH habits to create long-lasting personal hygiene compliance among the populations it serves.

This touching film made as a part of SASB’s awareness campaign shows how lack of knowledge of basic hygiene practices means children miss out on developmental milestones due to preventable diseases.

Play

SASB created the Swachhata curriculum, a textbook to encourage adoption of personal hygiene among school going children. It makes use of conceptual learning to teach primary school students about cleanliness, germs and clean habits in an engaging manner. Swachh Basti is an extensive urban outreach programme for sensitising urban slum residents about WASH habits through demos, skits and etc. in partnership with key local stakeholders such as doctors, anganwadi workers and support groups. In Ghatkopar, Mumbai, HUL built the first-of-its-kind Suvidha Centre - an urban water, hygiene and sanitation community centre. It provides toilets, handwashing and shower facilities, safe drinking water and state-of-the-art laundry operations at an affordable cost to about 1,500 residents of the area.

HUL’s factory workers also act as Swachhata Doots, or messengers of change who teach the three habits of WASH in their own villages. This mobile-led rural behaviour change communication model also provides a volunteering opportunity to those who are busy but wish to make a difference. A toolkit especially designed for this purpose helps volunteers approach, explain and teach people in their immediate vicinity - their drivers, cooks, domestic helps etc. - about the three simple habits for better hygiene. This helps cast the net of awareness wider as regular interaction is conducive to habit formation. To learn more about their volunteering programme, click here. To learn more about the Swachh Aadat Swachh Bharat initiative, click here.

This article was produced by the Scroll marketing team on behalf of Hindustan Unilever and not by the Scroll editorial team.