animal kingdom

Even if you were the last rhino on Earth: Why populations can’t be saved by a single breeding pair

The death of the last male northern white rhino in the world raises an interesting question: when does a species pass the point of no return?

A few days ago, the last male northern white rhino (Ceratotherium simum cottoni) died. His passing leaves two surviving members of his subspecies: both females who are unable to bear calves.

Even though it might not be quite the end of the northern white rhino because of the possibility of implanting frozen embryos in their southern cousins (C. simum simum), in practical terms, it nevertheless represents the end of a long decline for the subspecies. It also raises the question: how many individuals does a species need to persist?

Fiction writers have enthusiastically embraced this question, most often in the post-apocalypse genre. It’s a notion with a long past; the Adam and Eve myth is of course based on a single breeding pair populating the entire world, as is the case described in the Ragnarok, the final battle of the gods in Norse mythology.

This idea dovetails neatly with the image of Noah’s animals marching “two by two” into the Ark. But the science of “minimum viable populations” tells us a different story.

No inbreeding, please

The global gold standard used to assess the extinction risk of any species is the International Union for the Conservation of Nature Red List of Threatened Species.

The Red List’s assessment criteria are based on the so-called “50/500 rule”. This states that to avoid inbreeding depression (the loss of “fitness” due to genetic problems), an effective population size of at least 50 individuals in a population is required.

To avoid eroding evolutionary potential (the ability of a population to evolve to cope with future environmental changes), an effective population of at least 500 is required.

The key here is that little qualifier “effective”. This refers to individuals who can breed with each other without causing inbreeding or loss of genetic diversity. A family unit, for example, might have only one or two reproductively effective members. But they would also need another, unrelated, family unit nearby for their offspring to reproduce with.

That means that the number of effective individuals is lower than the total population. On average, the ratio is about 0.1 to 0.2; that is, one effective individual (genetically speaking) for every five to ten members of the population.

This also assumes that the breeding pairs are matching up based on an optimal genetic basis – what geneticists call an “idealised population”.

In a perfect world, a breeding pair of animals would be completely unrelated and would have no chance of producing babies with any genetic defects caused by inbreeding. However, real populations rarely behave like this, so some pairs have a certain amount of relatedness. As the population gets smaller, the chance of breeding with a relative increases, which leads to more frequent and severe inbreeding.

Repopulating the world after the apocalypse

So let’s do the maths. Fifty effective individuals – the IUCN standard for avoiding inbreeding – equals a total population of 250 to 500. This means that, in a hypothetical apocalypse, humanity would need a lot more than a handful of survivors to repopulate effectively.

However, to retain evolutionary potential – to remain genetically flexible and diverse – the IUCN criteria suggest we would need at least 500 effective individuals. That requires a population of 2,500 to 5,000.

Some preliminary results emerging from ongoing research at the Centre of Excellence for Australian Biodiversity and Heritage appear to confirm this. Using both ancient DNA techniques and palaeo-demographic models, we have estimates of a minimum effective population size for Aboriginal Australians when they first appeared of about 250. This means at least several thousand had to arrive around the same time to manage to colonise the entire continent successfully.

Of course, not every species has the same ratio of effective to total population size, and not all populations necessarily need 5,000 individuals to survive. But without being able to measure the true ratio for a specific population, it helps to default to the average situation.

The idea that 50 individuals is enough to avoid inbreeding depression comes largely from laboratory populations that probably do not describe the situation for populations living in wild environments.

In species as varied as houseflies and pinkfairies, populations substantially greater than 50 individuals still succumb to inbreeding depression. So, in many cases, 50 effective individuals is in fact too low to ensure no inbreeding depression occurs. It may be that 100 effective individuals is closer to the true minimum, without even considering how populations respond to evolutionary challenges.

So, sensational analogies about the apocalypse aside, do human beings follow the same rule? We aren’t entirely sure, but evidence suggests that most species in vastly different groups roughly follow the same trend.

An emerging rule of thumb is that when a population starts to dip below several thousand individuals, it has a high likelihood of going extinct.

Corey Bradshaw, Matthew Flinders Fellow in Global Ecology, Flinders University.

This article first appeared on The Conversation.

Support our journalism by subscribing to Scroll+ here. We welcome your comments at
Sponsored Content BY 

Do you really need to use that plastic straw?

The hazards of single-use plastic items, and what to use instead.

In June 2018, a distressed whale in Thailand made headlines around the world. After an autopsy it’s cause of death was determined to be more than 80 plastic bags it had ingested. The pictures caused great concern and brought into focus the urgency of the fight against single-use plastic. This term refers to use-and-throw plastic products that are designed for one-time use, such as takeaway spoons and forks, polythene bags styrofoam cups etc. In its report on single-use plastics, the United Nations Environment Programme (UNEP) has described how single-use plastics have a far-reaching impact in the environment.

Dense quantity of plastic litter means sights such as the distressed whale in Thailand aren’t uncommon. Plastic products have been found in the airways and stomachs of hundreds of marine and land species. Plastic bags, especially, confuse turtles who mistake them for jellyfish - their food. They can even exacerbate health crises, such as a malarial outbreak, by clogging sewers and creating ideal conditions for vector-borne diseases to thrive. In 1988, poor drainage made worse by plastic clogging contributed to the devastating Bangladesh floods in which two-thirds of the country was submerged.

Plastic litter can, moreover, cause physiological harm. Burning plastic waste for cooking fuel and in open air pits releases harmful gases in the air, contributing to poor air quality especially in poorer countries where these practices are common. But plastic needn’t even be burned to cause physiological harm. The toxic chemical additives in the manufacturing process of plastics remain in animal tissue, which is then consumed by humans. These highly toxic and carcinogenic substances (benzene, styrene etc.) can cause damage to nervous systems, lungs and reproductive organs.

The European Commission recently released a list of top 10 single-use plastic items that it plans to ban in the near future. These items are ubiquitous as trash across the world’s beaches, even the pristine, seemingly untouched ones. Some of them, such as styrofoam cups, take up to a 1,000 years to photodegrade (the breakdown of substances by exposure to UV and infrared rays from sunlight), disintegrating into microplastics, another health hazard.

More than 60 countries have introduced levies and bans to discourage the use of single-use plastics. Morocco and Rwanda have emerged as inspiring success stories of such policies. Rwanda, in fact, is now among the cleanest countries on Earth. In India, Maharashtra became the 18th state to effect a ban on disposable plastic items in March 2018. Now India plans to replicate the decision on a national level, aiming to eliminate single-use plastics entirely by 2022. While government efforts are important to encourage industries to redesign their production methods, individuals too can take steps to minimise their consumption, and littering, of single-use plastics. Most of these actions are low on effort, but can cause a significant reduction in plastic waste in the environment, if the return of Olive Ridley turtles to a Mumbai beach are anything to go by.

To know more about the single-use plastics problem, visit Planet or Plastic portal, National Geographic’s multi-year effort to raise awareness about the global plastic trash crisis. From microplastics in cosmetics to haunting art on plastic pollution, Planet or Plastic is a comprehensive resource on the problem. You can take the pledge to reduce your use of single-use plastics, here.

This article was produced by the Scroll marketing team on behalf of National Geographic, and not by the Scroll editorial team.